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AbstractÐIn the multiprocessor scheduling problem, a given program is to be scheduled in a given multiprocessor system such that

the program's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a

suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of

some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutation genetic

operations. This knowledge-augmented genetic approach is empirically compared with a ªpureº genetic algorithm and with a ªpureº list

heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that

our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of

execution time.

Index TermsÐMultiprocessors, scheduling problems, list heuristics for scheduling problems, genetic algorithms, NP-hard,

optimization.
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1 INTRODUCTION

LET a (homogeneous) multiprocessor system be a set of m
identical processors, m > 1. Each processor has its own

memory and each pair of processors communicate exclu-
sively by message passing through an interconnection
network. Additionally, let a parallel program be a set of
communicating tasks to be executed under a number of
precedence constraints. To each task is associated a cost,
representing its execution time. A weighted acyclic task
digraph can be used to represent the tasks (vertices of the
task digraph) and the precedence constraints (arcs of the
task digraph). In order to be executed, each task of a given
parallel program must be scheduled to some processor of a
given multiprocessor system. Consequently, tasks that
communicate in the parallel program may be scheduled to
different processors, which leads these processors to
communicate during the execution of the parallel program.
In general, these communications slow down the execution
of the parallel program. Considering these communications
and the precedence constraints between tasks, it follows
that different schedules of each task satisfying the pre-
cedence constraints lead to different execution times of the
parallel program. This is the motivation to the optimization
problem informally defined below.

Given a parallel program to be executed on a multi-

processor system, the (multiprocessor) scheduling problem

consists of finding a task schedule that minimizes the

execution time of the parallel program and the number of

required processors. In this paper, we deal with a slightly
easier (although also NP-hard1) version of the scheduling
problem where the number of processors is fixed. Due to
the importance of this optimization problem, it has been
extensively studied by a large number of researchers (see
for instance [2], [3], [5], [6], [7] and references therein). Since
an exhaustive search is often impracticable, most of the
work has been done on fast heuristic methods to find
suboptimal solutions, i.e., solutions whose optimality cannot
be guaranteed. In other words, the purpose of such heuristic
methods is to be able to determine a good solution, even
when the instance size leads the exhaustive search to be too
long. The most studied heuristic methods for multiproces-
sor scheduling problems are the so called list heuristic [5].

Another heuristic method used in the scheduling
problem context is the meta-heuristic known as genetic
algorithms [8], [9]. A genetic algorithm is a guided random
search method where elements (called individuals) in a
given set of solutions (called population) are randomly
combined and modified (we call these combinations cross-
over and mutation, respectively) until some termination
condition is achieved. The population evolves iteratively (in
the genetic algorithm terminology, through generations) in
order to improve the fitness of its individuals. The fitness of
an individual s1 is said to be better than the fitness of
another individual s2 if the solution corresponding to s1 is
closer to an optimal solution than s2. In each iteration, the
crossovers generate a new population in which the
individuals are supposed to keep the good characteristics
of the individuals of the previous generation.

In the context of scheduling problems, Hou et al. [10],
and Wang and Korfhage [11] proposed pure genetic
algorithms whose main difference lays in the way the
individuals are coded. Wang and Korhage use a bi-
dimensional matrix to code a schedule, while Hou et al.
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proposed a coding based on strings. In both algorithms, no
knowledge about the problem is taken into account, and the
search is accomplished entirely at random considering only
a subset of the search space.

In this paper, we study the impact of 1) adopting genetic
operators such that all feasible solutions are considered in
the search, and 2) integrating knowledgeÐin the form of list
heuristicsÐinto a genetic algorithm for multiprocessor
scheduling. The idea of integrating knowledge into a
genetic algorithm for the MSP has been recently and
independently addressed by Ahmad and Dhodhi in [12].
In their algorithm, a chromosome represents, for each task,
a priority. Priorities are defined, before the execution, as the
longest path from a node to a node which sends no
messages. At any given point in the algorithm, a scheduling
can be deduced from the priorities by means of a list
algorithm. Their genetic algorithm works on the priorities
with standard crossover and mutation. The list algorithm is
then used only to build a solution from the chromosome-
coded priorities.

In our approach, we use the coding from [10] and
propose two new genetic algorithms which differ from the
ones discussed in [10], [12] in that the knowledge is
integrated inside the crossover and mutation operators.
Notice that this method is more flexible because different
operators (i.e., different knowledges) can be used in the
different operators.

The first original genetic algorithm we propose, when
compared to the one in [10], extends the set of feasible
solutions that is considered in the search. Analytically, we
were able to demonstrate that a very important drawback of
the algorithm from [10] is the fact that it does not take all the
search space into consideration, while ours does not suffer
of this drawback. Our second genetic algorithm keeps this
positive feature and integrates some knowledge about
multiprocessor scheduling in the form of a list heuristics.
In this second algorithm, knowledge-augmented crossovers
and mutations are proposed.

Instead of testing our genetic algorithm with randomly
generated instances, as in [10], [11], and [12], we preferred
to use as testbench some relatively large instances provided
by ANDES-Synth [13], [14]. ANDES-Synth is a tool that
generates synthetic task digraphs whose shapes represent
known parallel programs, as divide and conquer, prolog
solving, Gauss elimination, etc. In order to be close to
reality, the costs of these task digraphs are estimated in
function of evaluations carried out over an IBM SP-1
parallel computer. Using this testbench, we compared three
algorithms, namely, the pure genetic algorithm from [10],
the list (greedy) heuristic from [15] and our combined
algorithm.

The three genetic algorithms were implemented and the
results of extensive experiments compared to a list heur-
istic. The tests results show that the solutions found with
our genetic algorithms are much better than those of [10].
They yield better quality initial populations and crossover
offsprings than pure random choices. From the experi-
mental results, we can conclude that integrating knowledge
into genetic algorithms could help improving the quality of
solution, and the search space containing necessarily an

optimal scheduling is also an improvement on the results in
[10]. In fact, the only bad characteristic of our approaches is
their longer execution time. The first genetic algorithm we
propose gives better solutions than [10], but needs a longer
execution time to achieve the final solution. The same is true
when comparing our second genetic algorithm with our
first one. Finally, the algorithm in [12] was tested on
instances of size 30, while we were able to run instances
with up to 1,482 tasks.

Our paper is organized as follows: The scheduling
problem and the principles of genetic algorithms are
precisely defined in Section 2. In Section 3, the algorithm
from [10] is reviewed and analyzed. An example where it
cannot find the optimal solution is presented. Our first
improved genetic algorithm is represented in Section 4. The
knowledge-augmented genetic algorithm is then intro-
duced in Section 5. Results, comparisons and analyses are
shown in Section 6. We close the paper with concluding
remarks and ways for further research.

2 PRELIMINARIES

In this section, we define more formally the multi-
processor scheduling problem and the principles of
genetic algorithms.

2.1 Multiprocessor Scheduling

In order to formalize the multiprocessor scheduling
problem, we first define a (homogeneous) multiprocessor
system and a parallel program. A (homogeneous) multi-
processor system is composed of a set P � fp1; � � � ; pmg of m
identical processors. They are connected by a complete
communication network, where all links are identical. Each
processor can execute at most one task at a time and task
preemption is not allowed. While computing, a processor
can communicate through one or several of its links.

The parallel program is described by an acyclic digraph
D � �T ; A�. The vertices represent the set T � ft1; . . . ; tng of
tasks and each arc represents the precedence relation
between two tasks. An arc �ti1 ; ti2� 2 A represents the fact
that at the end of its execution, ti1 sends a message whose
contents are required by ti2 to start execution. In this case, ti1
is said to be an immediate predecessor of ti2 , and ti2 itself is
said to be an immediate successor of ti1 . We suppose that t1 is
the only task without any immediate predecessor. A path is
a sequence of nodes < ti1 ; � � � ; tik > , 1 < k � n such that til is
an immediate predecessor of til�1

, 1 � l < k. A task ti1 is a
predecessor of another task tik if there is a path < ti1 ; � � � ; tik >
in D. To every task ti, there is an associated value
representing its duration, and we assume that these values
are known before the execution of the program. In addition,
it is assumed that the duration of all the communications is
also known at compile-time. Thus, to every arc �ti1 ; ti2� 2 A
there is an associated cost representing the transfer time of
the message sent by ti1 to ti2 . If both message source and
destination are scheduled to the same processor, then the
cost associated to this arc becomes null.

Hence, a schedule is a vector s � fs1; � � � ; sng, where
sj � fti1 ; � � � ; tinj g, i.e., sj is the set of the nj tasks scheduled
to pj. For each task til 2 sj, l represents its execution rank in
pj under the schedule s. Further, for each task ti, we denote
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p�ti; s� and r�ti; s�, respectively, the processor and the rank

in this processor of ti under the schedule s. The execution

time yielded by a schedule is called makespan. We consider

uniquely the schedules where the introduction dates for the

tasks are computed through a list heuristic whose principle

is to schedule each task ti to p�ti; s� according to its rank

r�ti; s�. In addition, the task is scheduled as soon as possible

depending on the schedule of its immediate predecessors.
A list heuristic builds a schedule step by step. At each

step, the tasks that can be scheduled (called free tasks) are

those whose all predecessors have already been scheduled.

Then, we choose one of such tasks, say ti, according to a

certain rule R1. Additionally, we choose a processor, say pj,

to which ti will be scheduled according to another rule R2.

We then schedule ti to pj as soon as possible. This algorithm

finishes when all tasks have been scheduled. At an iteration

k of this algorithm, let R�k� be the set of tasks remaining to

be scheduled, and F �k� the set of free tasks from R�k�.
Initially, R�0� � T and F �0� � ft1g. Thus, at an iteration

k > 0, we choose a task from F �k�, we take it out from both

R�k� and F �k�, and we schedule it to p�ti; s�, as soon as

possible. This algorithms finishes when F �k� � ;.
We define that a schedule s is feasible if and only if the

above algorithm that constructs s finishes at iteration k � n.

This means that all tasks could be scheduled since exactly

one task is scheduled at each iteration. It is clear that the

schedule obtained is minimal with respect to the make-

span. Fig. 1 illustrates a schedule and the introduction

dates computed by a list heuristic. The acyclic digraph D

shown in this figure is composed of five tasks, while the

multiprocessor system is composed of three processors

fully interconnected. Each di indicates the cost of ti and

each c�i1; i2� represents the communication time associated

to the arc �ti1 ; ti2�. A diagram representing a schedule s of

the tasks of D on the multiprocessor system is also shown.

In this diagram, the processor, the introduction date and

the duration of each task according to s are indicated, as

well as the vector representation of the schedule s. For

instance, t1 is scheduled on processor p1 at the time interval

�0::2�, t2 is scheduled on processor p2 at the time interval
�4::6�, and so on.

2.2 Genetic algorithms

As we saw in the introduction, a genetic algorithm starts
with an initial population that evolves through generations.
This evolution starts with an initial population randomly
generated and the ability of an individual to span through
different generations and to reproduce depends on its
fitness. In our case, the fitness of an individual is defined as
the difference between its makespan and the one of the
individuals having the largest makespan in the population.
Notice that the best individual corresponds to the one
having the smallest makespan and the largest fitness. In
what follows, we review the operators that compose a
genetic algorithm.

The selection operator allows the algorithm to take biased
decisions favoring good individuals when changing gen-
erations. For this, some of the good individuals are
replicated, while some of the bad individuals are removed.
As a consequence, after the selection, the population is
likely to be ªdominatedº by good individuals. Starting from
a population P1, this transformation is implemented
iteratively by generating a new population P2 of the same
size as P1, as follows: Initially, the best individual of P1 is
replicated, with only one copy kept in P1 and the other
inserted in P2. Then, at each iteration, we randomly select
an individual s1 2 P1 according to its fitness. Then, s1 is
duplicated into a new individual s01, and s1 is kept in P1

while s01 is inserted into P2. This process is repeated until P2

reaches the size of P1. Notice that, using this scheme, each
individual can be selected more than once or not at all.
Thus, some individuals are eliminated from generation to
generation.

Genetic algorithms are based on the principles that
crossing two individuals can result on offsprings that are
better than both parents and that a slight mutation of an
individual can also generate a better individual. The
crossover takes two individuals of a population as input
and generates two new individuals, by crossing the parents'
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characteristics. Hence, the offsprings keep some of the
characteristics of the parents. The mutation randomly
transforms an individual that was also randomly chosen.
It is important to notice that the size of the different
populations are all the same. Therefore, it is desirable that
ªbadº individuals generated by crossover and mutation
operators tend to be eliminated, while ªgoodº individuals
tend to survive and to reproduce. Thus, the selection
operator eliminates some individuals with poor fitness from
generation to generation.

The structure of the algorithm is a loop composed of a
selection followed by a sequence of crossovers and a
sequence of mutations. Let the population be randomly
divided in pairs of individuals. The sequence of crossovers
corresponds to the crossover of each of such pairs. After the
crossovers, each individual of the new population is
mutated with some (low) probability. This probability is
fixed at the begining of the execution and is constant.
Moreover, the termination condition may be the number of
iterations, execution time, results stability, etc.

3 THE STARTING GENETIC ALGORITHM

As mentioned before, our example of a ªpureº genetic
algorithm for multiprocessor scheduling is the algorithm
from [10], henceforth denoted HAR, for short. In the
following we recall its basic ideas.

3.1 Coding of Solutions

The coding of an individual s is composed of m strings
fs1; s2; � � � ; smg. There is a one to one correspondance
between processors and strings, where each string repre-
sents the tasks scheduled to some specific processor. Each
string sj represents the tasks scheduled to processor pj in s,
and these tasks appear in sj in the order of their execution
in the schedule s. Fig. 1 shows an example of a coding for
three processors (hence, with three strings). It is easy to see
that this encoding scheme using strings may represent
schedules not satisfying the precedence constraints. For this
reason, a method that guarantees that all strings in the
initial population or produced by crossovers or mutations
will correspond to feasible schedules was proposed in
HAR. This method is based on the concept of height of tasks.
Let ti be a task, hp�ti� be the maximum length of a path
between t1 and an immediate predecessor of ti, and hs�ti�
be the maximum length of a path between t1 and an
immediate successor of ti. Each task ti is then assigned a
random height whose value is such that

hp�ti� < height�ti� < hs�ti�:
For instance, in Fig. 1 we have

height�t1� � 0;
height�t2� � 1;
height�t3� � 1 or 2;
height�t4� � 2;
height�t5� � 3:

The tasks heights induce a partial order on the tasks that
helps representing the task dependencies in terms of
precedence relations. If a task ti1 is a predecessor of a task

ti2 , then height�ti1� < height�ti2�. Finally, in order to
guarantee the feasibility of a given schedule coded as
above, the tasks are ordered according to their heights in
each string.

3.2 Initial Population

The initial population is randomly generated, the tasks
being scheduled to the processors according to their height
as follows. Let T �h� be the set of tasks with height h in D.
For each height h, the following steps are performed.
Choose at random r tasks, 0 � r � jT �h�j, from T �h� to be
assigned to p1. Then, remove these r tasks from T �h� and
assign them to p1. Repeat this step for all processors
p2; � � � ; pmÿ1. Finally, schedule all remaining tasks from T �h�
to pm.

3.3 Genetic Operators

The genetic operators selection, crossover and mutation used
in HAR are described in the following.

3.3.1 Selection

Recall the principle of a selection operation discussed in
Section 2.2. In what follows, we present the ªroulette
wheelº principle used to randomly select an individual
from P1 in HAR. In its implementation, each individual is
assigned an interval, whose length is proportional to its
fitness. For instance, task ti is assigned to the interval
�1; fitness�t1��, task t2 is assigned to the interval
�fitness�t1� � 1; fitness�t1� � fitness�t2�� and so on. A
number between 1 and

Pn
i�1 fitness�ti� is drawn at

random. An individual is then selected if the randomly
drawn number belongs to its interval. Thus, the better the
fitness of an individual, the better the odds of it being
selected.

3.3.2 Crossover

The crossover in HAR consists of cutting each string of each
of the two parents in two partsÐleft and right. This is
obtained by simply randomly choosing a height h and
separating the tasks whose height is larger than hÐright
partÐfrom the ones whose height is smaller than hÐleft
part. The left part of each string remains the same, while the
right parts of the strings are exchanged. To ensure
consistency, a partition V1; V2 of the tasks is defined such
that the left parts contain only tasks in V1 and the right parts
contain only tasks in V2. Consistency is ensured since there
is no dependency from a task in V2 to a task in V1.

3.3.3 Mutation

Mutation of a schedule s is implemented through a very
simple protocol. First, a task ti1 is randomly chosen. Then,
among all the tasks with the same height as ti1 , another task
ti2 is randomly chosen. Finally, the positions of tasks ti1 and
ti2 are exchanged in the schedule s, generating a new,
mutated schedule.

3.4 Shortfalls

The improvements we suggest on HAR are based on the
following observations.

Observation 1 (Initial Population). In the initial population
of HAR, a processor pi has on average more tasks than
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pi�1, 1 � i < m. This happens because the task distribu-
tion over the processors is not uniform due to the initial
population generation scheme.

Observation 2 (Crossover). The method proposed to
implement the crossover operation is simple and fast,
but suffers of a severe drawback, namely that some
feasible solutions cannot be generated. As a matter of fact,
the search space of HAR may not contain any optimal
solution.

As an example of Observation 2, let us use the program
described in Fig. 2, where tasks 1 to 6 and 8 to 10 have
execution time 1, and task 7 has execution time 10. Suppose
that we have two processors p1 and p2 and that commu-
nication times are null. Applying HAR, we have:

height�1� � height�2� � height�3� � 0

height�4� � height�5� � height�6� � 1

height�7� � height�8� � height�9� � 2

height�10� � 3:

An optimal schedule assigns tasks 1, 4, 7, and 10, in this
order, to processor p1, and the tasks 2, 5, 8, 3, 6, and 9, in this
order, are assigned to processor p2. The makespan of this
schedule is 13. Notice, however, that by respecting the
constraint over the heights as in HAR, task 3 (of height 0) is
necessarily scheduled before the tasks of height 1. In
particular, task 3 is scheduled before tasks 4 and 5. In this
case, task 7 has to be delayed since either task 4 or 5 will
also be delayed. Hence, the makespan can never equal 13
time units, showing therefore that the search space in HAR
may not contain, in general, any optimal solution for the
scheduling problem under consideration.

Observation 3 (Absence of knowledge). Finally, we note
that the only knowledge about the problem that is taken
into account in the algorithm is of a structural nature,
through the verification of feasibility of the solutions.
While working towards the correction of the main
observations above, we also tried to integrate into our
algorithm the notion of quality of individuals.

4 THE FULL SEARCH GENETIC ALGORITHM

The aim of the full search genetic algorithm presented in
this section is to overcome the drawbacks discussed in

Observations 1 and 2. Instead of verifying the feasibility of a

solution through the tasks height values, we decided to use

the task digraph D � �T ; A� in order to determine whether

a transformation is possible. Thus, we need another

precedence relation. It stems from the precedences implied

by the tasks scheduled to the same processor in a given

schedule, say s, and is defined as follows:

A�s� � A [ f�ti1 ; ti2� j�ti1 ; ti2� 62 A;
p�ti1 ; s� � p�ti2 ; s�and

r�ti1 ; s� � r�ti2 ; s� ÿ 1g;
�1�

where the arcs that belongs to A�s� but not to A have cost

zero. We denote D�s� the digraph �T ; A�s��. We also define

the relation A� as the transitive closure of A, and

analogously, A��s� as the transitive closure of A�s�. From

these definitions, we have the following property of feasible

schedules.

Claim 1. A schedule s is feasible if and only if D�s� is acyclic.

Proof. Let us be given a feasible schedule s. We need to

show that D�s� is acyclic. For this purpose, let �ti1 ; ti2�
be any arc in A�s� ÿA. By definition, p�ti1 ; s� � p�ti2 ; s�
and r�ti1 ; s� � r�ti2 ; s� ÿ 1. By contradiction, suppose

that there is a cycle in D�s� including �ti1 ; ti2�. This

yields that} �ti2 ; ti1� 2 A��s�. Therefore, since s is

feasible, we observe that r�ti2 ; s� < r�ti1 ; s�, which leads

to a contradiction.
Conversely, consider the list algorithm that constructs

s, with D�s� acyclic. Suppose, by contradiction, that this
list algorithm finishes in an iteration k0 < n, implying
that s is not feasible. Then, there is an iteration 1 � k � k0

of the list algorithm such that R�k� 6� ;, but F �k� � ;.
This implies that every task in R�k� has an immediate
predecessor in R�k�. Since D is finite, there is a cycle in
D�s�, which is a contradiction. tu

In the following, we describe our full search genetic

algorithm based on (1) and Claim 1. In the rest of the paper,

we call this algorithm FSG, for short.

4.1 Coding of Solutions

We found out that the coding used in HAR was well-suited

for the extension of the searched space. Therefore, we also

code the individuals of a population as m strings

fs1; s2; � � � ; smg as it was done in HAR.

4.2 Initial Population

As in HAR, each individual of the initial population is

generated through a random list heuristics as follows: At

each iteration of this list heuristic, the task to be scheduled

is determined with the following rule:

I.1. Choose a task at random among those for which all
predecessors are already scheduled.

This rule corresponds to the rule R1 in the list heuristic

framework of Section 2.1. In addition, the random list

heuristic selects the processor (rule R2) as follows:

I.2. Choose a processor at random.
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Notice that HAR cannot use this method because the tasks
are not necessarily scheduled in the increasing order of their
heights. A positive feature of the method just described is
that it allows FSG to overcome the drawback of HAR
indicated in Observation 1. The new initial population
generation scheme guarantees that the task distribution
over the processors is uniform since every feasible schedule
is constructed with a list heuristic, and I.1 and I.2 define a
random list heuristic. Therefore, we have the result below:

Lemma 1. Let s be a feasible schedule and P be an initial
population generated with I.1 and I.2. Then, the probability of
P to contain s is greater than zero.

4.3 Genetic Operators

The genetic operators must be revisited in order to take into
account the new coding of solutions.

4.3.1 Selection

The selection is done using a biased roulette wheel as
described in Section 3.3.1.

4.3.2 Crossover

Let s1 and s2 be two individuals which should generate two
offsprings. As in HAR, the first step consists of separating
the two individuals into two parts. Let V 0 be a subset of
tasks verifying the following property

if t 2 V 0 then all predecessors of t also belong to V 0.
We call such a subset a closed task set. In order to ensure
consistency, we need again to determine a partition V1; V2 of
the tasks such that there is no dependency from a task in V2

to a task in V1. In other words, V1 is a closed task set.
However, since we do not schedule the tasks according to
their heights, we use (1) to build a partition such that the
necessary and sufficient condition from Claim 1 is verified,
as follows: We first define the digraph �T ; A�s1� [A�s2��
representing the dependencies stemming from the task
digraph as well as from the two schedules s1 and s2. Then,
let T � T . We execute the following steps while T 6� ;.

1. Choose randomly a task ti 2 T and V � Vj, j � 1
or 2.

2. If V � V1 then

V1  V1 [ ftig [
fti0 : ti0 2 T and

�ti0 ; ti� 2 �A��s1� [A��s2��g;
�2�

else

V2  V2 [ ftig [
fti0 : ti0 2 T and

�ti; ti0 � 2 �A��s1� [A��s2��g:
�3�

3. Delete all tasks inserted into V1 or V2 from T .

In 2), ti and all of its predecessors that remain in T are
inserted in V1. Equivalently, ti and all of its successors that
remain in T are inserted in V2 in 3). It is not difficult to see
that V1 and V2 correspond to the required partition when
T � ;.

Finally, the two offsprings s01 and s02 are generated from
s1 and s2 as in HAR. If the tasks in V1 represent the left part

of s1 and s2, and the tasks in V2 their right part, the
offsprings are generated by exchanging the right parts as

follows: To generate s01, we keep the tasks in V1 scheduled as
in s1, while the tasks in V2 are scheduled with the list

heuristic defined by the following rules:

R1: Choose a task ti having the smallest rank r�ti; s2�. In case

of several possibilities, choose one at random.

R2: Choose processor p�ti; s2�.
Notice that, using this method, the order of the tasks that
belong to V2 is the same in s2 and s01, but their introduction

dates may differ. The offspring s02 is generated similarly by
keeping the tasks that belong to V1 scheduled as in s2 and

taking into account s1 to schedule the tasks belonging to V2.
The following theorem guarantees that FSG does not

suffer from the drawback of HAR pointed out in Observa-

tion 2. We have shown in Lemma 1 that at least one optimal
solution can be represented in the initial population, but

this does not mean that operators like crossover or mutation
can generate an optimal solution. The following theorem

says that crossover can find an optimal solution:

Theorem 1. Let s be a feasible schedule and P be a generation in

a FSG execution. Then, the probability of P to contain s is

greater than zero.

Proof. The proof is by induction on the generations. For the
initial population P � P0, Lemma 1 applies. Suppose

that the theorem is valid for any feasible schedule and
any generation P � Piÿ1, for all i > 0. We investigate the

probability of the generation Pi to contain any feasible
schedule, say s. We concentrate the proof on the

crossover by supposing, without loss of generality, that
any mutation does not occur between Piÿ1 and Pi. Hence,

Pi is obtained from Piÿ1 by a selection followed by
crossovers.

Let s1 and s2 be two individuals. Also, let V1; V2 be a
partition of V , such that there is no dependency from a
task in V2 to a task in V1 in the digraph �T ; A�s1� [A�s2��.
Consider the following event E0:

E0-1. s1 and s2 belong to Piÿ1, both are selected and are
chosen as a pair to crossover.
V1; V2 is the partition of the crossover of s1 and s2.

In order to determine Pr�E0� (the probability of E0 to
occur from Piÿ1 to Pi), we examine the probability of E0-1
and E0-2. Pr�E0-1� is clearly greater then zero by the
induction hypothesis because the individuals are ran-

domly selected and the pairs for crossover are randomly
chosen. Pr�E0-2� is also greater than zero because V1; V2

is a partition as defined to the crossover operator, and
the determination of the partition in a crossover is done

at random.
From the previous discussion, we know that E0-1

and E0-2 may occur. Let us now examine the following
event E:

E-1. The tasks in V1 are scheduled in s1 as they are in s.
E-2. p�ti; s2� � p�ti; s�, for all tasks in V2.
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E-3. For any two tasks ti1 ; ti2 2 V2 scheduled on the same
processor in s2 we have

r�ti1 ; s2� < r�ti2 ; s2� ) r�ti1 ; s� < r�ti2 ; s�:

We have that the probability mentioned in the theorem is

given by Pr�E0�Pr�E�. Then, we prove the theorem if we

demonstrate that Pr�E j E0� > 0. We have

Pr�E j E0� � Pr�E-1 j E0�Pr�E-2 j E0�Pr�E-3 j E0�:
By the induction hypothesis, Pr�E-1 j E0� > 0 since s and

s1 are feasible schedules. Equivalently by induction,

Pr�E-2 j E0� > 0 and Pr�E-3 j E0� > 0 since s2 is a

feasible schedule. Thus, the theorem follows. tu

4.3.3 Mutation

Let s be an individual to which the mutation operator is to

be applied. We start by constructing the digraph

D�s� � �T ; A�s��. Then, the new individual is generated

using the iterative method for the generation of each

individual of the initial population (Section 4.2), where

the set F of free tasks is determined according to D�s�.

5 A COMBINED GENETIC-LIST ALGORITHM

The algorithm presented in previous section improves the

original HAR in such a way that Observations 1 and 2 do

not hold. However, Observation 3 remains valid. In this

section, a combined genetic-list algorithm, hereafter de-

noted CGL, for short, is described. In this combined

algorithm, knowledge about the scheduling problem is

integrated into the FSG algorithm in the form of new

crossover and mutation operators based on a list heuristic.

5.1 Coding of Solutions

As explained in Section 3.1, a set of strings represents the

solution. Each string represents the tasks which are

scheduled on a given processor, and their rank on this

processor.

5.2 Initial Population

The initial population is generated as described in Section

4.2. This is done by a random process using a list algorithm.

Notice that Lemma 1 also applies in this case.

5.3 Genetic Operators

The knowledge about the scheduling problem is integrated

into the genetic operators as described in the following:

5.3.1 Selection

The selection is done using a biased roulette wheel as

shown in Section 3.3.1.

5.3.2 Knowledge-Augmented Crossover

Let s1 and s2 be two individuals which should generate two

offsprings. The first step consists of separating the two

individuals into two parts. In other words, we need again to

determine a partition V1; V2 of the tasks such that V1 is a

closed task set as in Section 4.3.2.

Integrating knowledge. The problem is not completely

solved, since we still need to generate the two offsprings s01
and s02 from s1 and s2. As in HAR and FSG, we let the

scheduling s01 be the same as s1 for all tasks in V1. On the

other hand, instead of just exchange the right parts of the

strings, we introduce some knowledge in the generation of

the offsprings. For this, the remaining tasks (those in V2) are

scheduled according to a list algorithm run over the graph

D�s2�. We use the list heuristic called earliest date/most

immediate successors first (ED/MISF), defined by the follow-

ing rules:

R1: Compute the minimal introduction date of each free
task. This is computed in function of the precedence
constraints and in function of the schedule of tasks
previously scheduled. Choose the task with smallest
introduction date, say ti. In case of several possibilities,
choose the one with more successors. In case of several
possibilities, choose at random.

R2: Choose a processor at random among the processors
where the task ti can be scheduled as soon as possible.

The generation of s02 is analogous, with the tasks in V2

being scheduled under the constraints in D�s1�. Feasibility

of both s1 and s2 is guaranteed by Claim 1, since both D�s01�
and D�s02� are acyclic. Therefore, CGL does not suffer from

the drawback in the Observation 2. The following theorem

is analogous to Theorem 1.
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Theorem 2. Let s be a feasible schedule and P be a generation in
a CGL execution. Then, the probability of P to contain s is
greater than zero.

Proof. From the definition of crossover, we observe that the
crossover of swith itself may generate s. So, by induction,
the theorem follows directly from Lemma 1. tu

In fact, a stronger result concerning the ability to
generate all feasible solutions can be stated to CGL. We
refer the interested reader to [4], where it is proved that the
probability of P to contain a feasible solution s, given that
the generation previous to P does not contain s, is greater
than zero.

5.3.3 Knowledge-Augmented Mutation

The knowledge represented by list heuristics is also
integrated into the mutation operator as follows: Let s
be an individual to which the operator mutation is to be
applied. We start by constructing the digraph
D�s� � �T ; A�s��. Then, the new individual is formed
by using a list heuristic. The rules used are the same as
the crossover, where R1 is modified such that the
minimal introduction dates of the tasks are computed
exclusively in function of the precedence constraints.
This can be performed just once at the beginning of the
operation.

5.4 Discussion

Notice that the list heuristic used in the mutation
operator is simpler than the one used in the crossover
operator. The difference is the computation of the
minimal introduction dates. In the mutation operator,
these values are computed just once at the beginning of

the mutation operation since they depend uniquely on
the extended task graph. However, in the crossover
operator, these introduction dates take into account the
schedule of the tasks previously scheduled during the
execution of the list heuristic. Hence, the computation of
these introduction dates must be performed at each
iteration of the list heuristic. The reasons for adopting
these two rules are the following:

Crossover. The crossover operator is supposed to generate
ªgoodº individuals. Then, we adopt the rules that, in
general, bring the list heuristic to give better schedules.
The inconvenience is the time spent in each crossover.

Mutation. The main objective of mutation operations is to
produce a slight perturbation in the search in order to,
eventually, quit local minima. Then, the accuracy of the
new individual generated from a mutation is not crucial.
For this reason, we adopt simple and fast rules for the
mutation operator.

6 RESULTS, COMPARISONS, AND ANALYSES

In this section, we present the comparison results and
analyses of the different approaches. We implemented
the four algorithms described before, namely, ED/MISF,
HAR, FSG, and our combined genetic-list algorithm. All
our results correspond to tests run with our testbench,
for scheduling tasks on a 16 processors multiprocessor
system. Running times and makespans are given in
seconds.

6.1 The Testbench

We use as testbench instances provided by a tool called
ANDES-Synth [13], [14]. As mentioned earlier, it generates
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synthetic task digraphs that capture the main features of

well-known parallel programs. The results reported in this

work thus try to mimic reality. The task digraphs were the

following:

1. Bellford: This digraph represents the algorithm known as
Bellman-Ford, which solves the shortest path problem

from all nodes to a single destination in a weighted
directed graph [16].

2. Diamond1: The task digraph in this case is known as a
space-time digraph representing a systolic computation
[17].
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3. Diamond2: A systolic matrix multiplication as in [18] is
represented by this digraph.

4. Diamond3: This is the digraph of fine grained systolic
matrix multiplication [19].

5. Diamond4: This digraph corresponds to the systolic
computation of the transitive closure of a relation on a
set of elements [20].

6. Divconq: This digraph has the shape of a tree. It represents
a divide and conquer algorithm.

7. FFT: Unidimensional fast Fourier transform.
8. Gauss: This digraph describes the execution of a Gaussian

elimination used in the resolution of linear systems.
9. Iterative: It corresponds to a generic iterative algorithm,

each iteration being represented in a same level of the
digraph. The immediate successors of a task ti at level k
are tasks at level k� 1, corresponding to the next
iteration.

10. MS-Gauss: Consider a parallel computation of the kind
series-parallel, where the parallel component of the
computation is composed of several iterations. The
digraph MS-Gauss represents such a computation con-
taining successive resolutions of linear systems by
Gaussian elimination. The shape of this digraph is
shown in Fig. 3.

11. Prolog: This digraph corresponds to the resolution of a
logic program. Its structure is obtained at random.

12. QCD:representsagradientmethodfor linearsystems[16].

Table 1 shows the size of these graphs, given by the

number of tasks, as well as their normalized execution and

communication times. The tasks execution times corre-

spond to the number of integer operations executed, and

the communication times correspond to the number of

integers transferred. In order to obtain the actual execution
times and to model an IBM SP-1, we multiply the values in
Table 1 by 287�s. The communication of L integers costs
�129� 2; 430; 450L��s. The actual communication times can
be obtained by replacing L by the edges' weights in Table 1.
The digraphs were used with two sizes. For this reason, the
smaller instance is called -m for middle, while the largest is
called -l for large (size).

6.2 Initial Population

In Table 2, we present the characteristics of the initial
population in HAR, FSG, and in CGL. We note that our
method often produces more regular and better initial
populations.

6.3 Termination Condition

All of the implemented genetic algorithms stop in a
generation if the improvement on the best solution of the
initial population (in percentage points) becomes smaller
than the number of generations. This termination condition
is based on the idea that we should let the algorithm run as
long as it is improving the solution in a reasonable way. In
other words, this termination condition supposes that,
when it is violated during the execution of the correspond-
ing genetic algorithm, then this algorithm will not be able to
improve the solution significantly. In practical applications,
other termination condition can be used.

6.4 Final Results

The aim of our experiments is to compare our genetic
algorithms with ED/MISF and HAR in terms of the quality
of the solution provided and the execution time to find this
solution. Table 3 shows these comparative results.2 In
general terms, the results obtained with HAR were able to
improve the ones obtained with ED/MISF with relatively
small execution times (only row 3 ED/MISF obtained a
better solution). Considering our genetic algorithms, the
results confirm that the search in the entire search space and
the integration of knowledge allow us to dramatically
improve the final solutions, but the elapsed time can be
much higher.

Comparing the results obtained with FSG with those of
HAR, we notice that the crossover operator in HAR, which
reduces the space of solutions actually considered, is indeed
a drawback in terms of the quality of the final solution. This
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2. The greedy ED/MISF algorithm was run 1,000 times with each
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is observed in the initial population (Table 2) and in the
final solution. Considering the entire search space, FSG
performs better than HAR due to two reasons. First, FSG
randomly generates better solutions in the initial popula-
tion. Second, FSG considers, during the search, some
solutions not considered by HAR. Consequently, FSG is
able to reach better solutions than HAR in its random
search.

Table 3 also shows the comparison between the results
obtained with our algorithm, where knowledge about the
problem was implemented through knowledge-augmented
crossovers and mutations and those obtained with ED/
MISF and HAR. Indeed, our combined algorithm performs
well even for instances where ED/MISF performs poorly.
This may be explained by two facts. First, the genetic
approach allows us to find good beginnings of solutions,
based on its random nature, while the list approach is able
to complete those partial solutions with efficient assign-
ments. Using the Schema Theorem terminology [8], [9], the
number schemata whose solution has the makespan below
the average increases exponentially. In the specific case of
CGL, the crossover and mutation operators lead two kinds
of schemata to dominate, namely:

1. Beginnings of below-average solutions; and
2. Consider two tasks ti1 and ti2 such that �ti1 ; ti2� 62 A�

and �ti2 ; ti1� 62 A�. The schemata in this case are

those defining a precedence relation between ti1 and
ti2 corresponding to below-average solutions in
which ti1 and ti2 are scheduled to the same
processor.

Notice that the integration of knowledge also allows us to
dramatically improve the solutions in HAR. Unfortunately,
however, the elapsed time of our algorithm can be much
higher in both cases.

An interesting point to observe is how HAR performs
when run for as long as CGL is run. In order to give an
insight into this issue, we also run HAR with a more
permissive termination condition. This ªperseveringº HAR
algorithm stops when the number of generations is equal to
2 or 4 times the number of generations of HAR. We note
that, in spite of execution times significantly larger than
those of HAR, the improvements on the final solution are
modest (see Table 4). In fact, persevering HAR spent an
additional long time getting only slight improvements. This
suggests that the inability of HAR to generate all feasible
solutions is a severe drawback which prevents HAR to
significantly improve the results in Table 3.

Another interesting aspect of our results is the compar-
ison between the quality of the final solution obtained with
the algorithms we tested and the sequential solution, i.e.,
the execution time on one processor of the program
corresponding to each of the DAG's considered. These
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comparisons are based on the speedup, which is defined as
the ratio between the makespan of the sequential and
parallel solution. The speedups are shown in Table 5. Recall
that the parallel solutions correspond to 16 processors. With
the medium size DAG's, the speedup is limited because the
parallelism is restricted by the precedence constraints. On
the other hand, speedups close to 16 were obtained with the
larger DAG's. Considering the average values in Table 5,
we observe that some of the results obtained with CGL are
very close to optimal.

Fig. 4 shows the behavior of the makespan of the best
schedule found in function of the execution time for ED/
MISF, FSG, and CGL. Recall that ED/MISF is run 1,000
times. The two genetic algorithms (FSG and CGL) have a
long start-up time because they compute a transitive closure
of the DAG once, at the beginning. Due to this fact, ED/
MISF is often better at the beginning but, after a few
generations, FSG or CGL outperforms it.

It is clear from our experiences that FSG is a compromise
between a pure and fast genetic approach which yields poor
solutions, or the combined approach that we proposed here,
which yields very good solutions, although paying the price
of a larger computation time.

7 CONCLUSION

As mentioned in [10], genetic algorithms are well-adapted
to multiprocessor scheduling problems. In this paper, we
tested three genetic algorithms with synthetic task digraphs
and we obtained solutions whose speedup are very close to
linear. Moreover, one of the qualities of genetic algorithms
we tested is that it can be easily extended to other instances
of the scheduling problem, e.g., where a topology different
from the complete graph is given for the interconnection
network.

The experimental results presented in this paper demon-
strate that the integration of knowledge about the multi-
processor scheduling problem, through the use of a list
heuristic in knowledge-augmented crossovers and muta-
tions, helps to dramatically improve the quality of the
solutions that can be obtained with both a pure genetic and
a pure list approaches. Unfortunately, the price to pay is the
running time of the combined algorithm, which can be
much larger than when running the pure genetic algorithm.

One should notice, however, that the running times (in
the order of some hours for difficult graphs) are still
reasonable, given that the problem is NP-hard and the
instances are big. On the other hand, the running time is
larger then pure genetic and list approaches, but smaller
then the combined approach. Thus, an interesting direction
for further research is the design of an algorithm keeping
the good properties introduced by CGL, but using the
coding from [12]. Such an algorithm would produce good
quality solutions in shorter time.
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