
A Modified Genetic Algorithm for Task Scheduling in Multiprocessor
Systems

Yi-Hsuan Lee and Cheng Chen

Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

{yslee, cchen}@csie.nctu.edu.tw

Abstract

The impressive proliferation in the use of

multiprocessor systems these days in a great

variety of applications is the result of many

breakthroughs over the last two decade. In these

multiprocessor systems, an efficient scheduling of

a parallel program onto the processors that

minimizes the entire execution time is vital for

achieving a high performance. This problem is

exactly known very hard to solve, so many

heuristic methods are designed to obtain

near-optimal solutions. Genetic Algorithms are

widely used to solve this problem, which are quite

effective but not efficient enough. Therefore, we

propose a modified genetic algorithm to overcome

this drawback and construct a simulation and

evaluation environment to evaluate it. Our method

is called Partitioned Genetic Algorithm (PGA),

which integrates the concept of Divide-and-

Conquer mechanism to partition the entire

problem into subgroups and solve them

individually. According to our experimental results,

PGA can not only dramatically decrease the time

doing scheduling, but also obtain similar

performances as original genetic algorithms,

sometimes it is even better.

1 Introduction

With many breakthroughs such as device

technology, theory, computer architectures, and

software tools, multi- processor systems are used

in a great variety of applications [1]. In these

multiprocessor systems, scheduling is a major

issue in its operation, which is also an important

problem in other areas such as manufacturing,

process control, economics, operation research, etc.

[2]. Basically, scheduling is to simply allocate a

set of tasks to resources such that the optimum

performance is obtained. However, it is known to

be NP-complete for the general case and even for

many restricted cases [3]. Therefore, scheduling is

usually handled by heuristic methods which

provide reasonable solutions of the problem.

Multiprocessor scheduling methods can be

divided into list heuristics and meta-heuristics

[4-5]. List heuristics assign each task a priority

and sort them in decreasing order [8-9]. As

processors become available, the task with the

highest priority is selected and allocated to the

most suited processor. Most of them are efficient

but often can’t obtain reasonable solutions in all

situations.

Meta-heuristics, known as Genetic

Algorithms, is a guided random search method

which mimics the principles of evolution and

natural genetics [7]. Because genetic algorithms

search optimal solutions from entire solution space,

they often can obtain reasonable solutions in all

situations. Nevertheless, their main drawback is to

spend much time doing scheduling. Hence, we

propose a modified genetic algorithm to overcome

this drawback in this paper.

Our method is named Partitioned Genetic

Algorithm (PGA), which integrates the concept of

Divide-and- Conquer mechanism to partition the

entire problem into subgroups and solve them

individually. Like the essential advantage of

Divide-and-Conquer mechanism, experimental

results show that PGA can dramatically decrease

the time doing scheduling. Meanwhile, our results

also indicate that PGA can obtain similar

performance as original genetic algorithms,

sometimes it is even better.

The remaining of this paper is organized as

follows. Section 2 contains some preliminaries.

Design issues and principles of our PGA are

introduced in Section 3. Section 4 gives

experimental results to demonstrate features and

merits of our PGA. Finally, some conclusions are

given in Section 5.

2 Preliminaries

In this Section we formally define the

multiprocessor scheduling problem. Principles of

genetic algorithm are also introduced.

2.1 Multiprocessor Scheduling [4-6]

A homogeneous multiprocessor system is

composed of m identical processors P0…Pm-1.

They are connected by a complete communication

network, where all links are identical. Each

processor can execute only one task at a time and

task preemption is not allowed.

The parallel program is described by a

Directed Acyclic Graph (DAG) G = (V, E, T, C)

where V is the set of task nodes, E is the set of

communication edges. The value ti ∈ T is the

execution time of node ni ∈ V. The value cij ∈ C is

the communication cost incurred along the edge eij

= (ni, nj) ∈ E, which is zero if both ni and nj are

assigned to the same processor. In this case, ni is

said to be an immediate predecessor of nj, and nj

itself is said to be an immediate successor of ni. A

task without any predecessor is called entry task

and exit task is a task without any successor. An

example of task graph is shown in Fig. 1.

Tlevel(ni) is defined to be the length of the

longest path in the task graph from an entry task to

ni, excluding the computation cost of ni.

Symmetrically, blevel(ni) is the length of the

longest path from ni to an exit task, including the

computation cost of ni. Formula (2.1) and (2.2) are

formal definitions of tlevel(ni) and blevel(ni).

Notice that we consider communication costs

T0 T1 T2

T3

T6

T7

T8

T9

T10

T4

T5

T11

ni ti eij cij eij cij
T0 15 E0 3 3 E4 9 2
T1 6 E0 4 1 E5 6 1
T2 2 E0 5 1 E7 8 3
T3 3 E1 3 2 E9 10 2
T4 9 E1 5 2
T5 4 E2 3 2
T6 1 E2 4 2
T7 9 E2 7 3
T8 4 E3 5 2
T9 9 E3 7 1
T10 2 E4 5 1
T11 10 E4 6 1

Fig. 1. Task graph.

while calculating values tlevel and blevel.

(2.2)

(2.1)

}({max)(

})({max)(

)(

)(

jij
nsuccn

ii

jijj
npredn

i

nblevelctnblevel

ctntlevelntlevel

ij

ij

++=

++=

∈

∈

Given a parallel program to be executed on a

multiprocessor system, the scheduling problem

consists of finding a task schedule that minimizes

the entire execution time. The execution time

yielded by a schedule is usually called makespan.

A solution to a scheduling problem is an

assignment for each task of a starting time and a

processor. Optimizing allocation under time and

precedence constraints in a multiprocessor system

is an NP-hard problem in general [4-5, 10].

2.2 Genetic Algorithm [4-5, 7, 10]

Genetic algorithm is a guided random search

algorithm based on the principles of evolution and

natural genetics. It combines the exploitation of

past results with the exploration of new areas of

the search space. By using survival of the fittest

techniques and a structured yet randomized

information exchange, genetic algorithm can

mimic some of the innovative flair of human

search. Genetic algorithm is randomized but not

simple random walks. It exploits historical

information efficiently to speculate on new search

points with expected improvement.

Genetic algorithm maintains a population of

candidate solutions that evolves over time and

ultimately converges. Individuals in the population

are represented with chromosomes. Each

individual has a numeric fitness value that

measures how well this solution solves the

problem. Genetic algorithm contains three

operators. The selection operator selects the fittest

individuals of the current population to serve as

parents of the next generation. The crossover

operator chooses randomly a pair of individuals

and exchanges some part of the information. The

mutation operator takes an individual randomly

and alters it. As natural genetics, the probability of

applying mutation is very low while that of

crossover is usually high. The population evolves

iteratively (in the genetic algorithm terminology,

through generations) in order to improve the

fitness of its individuals.

The structure of genetic algorithm is a loop

composed of a selection followed by a sequence of

crossovers and mutations. Probabilities of

crossover and mutation are constants and fixed in

the beginning. Finally, genetic algorithm is

executed until some termination condition is

achieved, such as the number of iterations,

execution time, results stability, etc.

3 Partitioned Genetic Algorithm

As mentioned before, the main drawback of

genetic algorithms is to spend much scheduling

time. Obviously, its scheduling time directly

depends on the number of tasks being scheduled.

Hence, we present a Partitioned Genetic

Algorithm (PGA), which integrates the concept of

Divide-and-Conquer mechanism to decrease the

number of tasks being scheduled at a time.

3.1 Blevel Partition Algorithm

Main steps of Divide-and-Conquer

algorithm are to divide the problem into subgroups,

solve them individually, and merge them to form

the final solution. In PGA we present a Blevel

Partition Algorithm to partition the original task

graph according to the blevel value of every task.

Steps of Blevel Partition Algorithm are shown

below:

I. Calculate the blevel of each task.

II. Sort tasks in decreasing order according to

their blevel. Tie- breaking is done randomly.

III. Partition tasks into subgroups evenly in

sequence.

Fig. 2 is the result of partitioning task graph

in Fig. 1 into three subgroups and black arrows

represent precedence constraints among subgroups.

Notice that after partitioning, these precedence

constraints cannot form any cycle. A partition

result is legal if its precedence constraints don’t

contain any cycle. Fortunately, the following

Lemma proves that Blevel Partition Algorithm

always generate legal partition result.

Lemma Blevel Partition Algorithm can always

generate legal partition results.

Proof: Assume that S1…Sn are subgroups

generated by Blevel Partition Algorithm and tasks

ni ∈ Si, nj ∈ Sj, for i < j. Because Blevel Partition

Algorithm sorts and partitions tasks in sequence, it

is obvious that blevel(ni) ≥ blevel(nj). From the

definition of blevel, ni cannot be a successor of nj.

Thus, tasks in Si will not depend on any task in Sj

and the partition result is always legal. ٱ

3.2 Genetic Algorithm

After partitioning, all subgroups are

scheduled using standard genetic algorithms

individually in sequence. Complete time of every

processor in subgroup Si is transferred to subgroup

Si+1 as the ready time of corresponded processor.

In other words, all processors can start executing

tasks at different time except for the first subgroup.

This transferring step is a key point of PGA,

which can make the final task schedule much

compact.

Many genetic algorithms designed for DAG

scheduling have been proposed. Except for pure

genetic algorithms, some knowledge-augmented

methods are developed to produce better results.

Since each algorithm contains its own

characteristics, we choose some famous genetic

algorithms and construct a simulator to integrate

them [4-5, 8]. Following subsections contain

methods we have implemented.

3.2.1 Coding

A schedule is feasible if it satisfies the

following two conditions:

I. A task’s predecessors must have finished

their execution before it can start executing.

Fig. 2. Partition result.

ni blevel(ni)
T0 40
T1 28
T2 28
T4 24
T3 20
T7 16
T9 13
T11 10
T5 6
T8 4
T10 2
T6 1

S1

S2

S3

T0 T1 T2

T3

T6

T7

T8

T9

T10

T4

T5

T11 S1

S2

S3

II. All tasks within the task graph must execute

at least and only once.

A tricky question is how to represent a

schedule in a way suitable for a heuristic

algorithm. We decide on the following

representation.

where a pair ti, pi means that task Tti should be

executed on processor Ppi. There is an explicit

ordering among tasks in sequence parts.

Chromosomes in many previous studies only

interpret explicit task order on each processor. But

in our coding, we let tasks ordered globally, which

means the starting time of task Tti is less than or

equal to Tti+1 whether they are allocated to the

same or different processors. Fig. 3 is a feasible

schedule of task graph in Fig. 1.

An important factor in selecting the string

representation is that all possible feasible

schedules in the search space can be unique

represented. It is also desirable, though not

necessary, that the strings are in one-to-one

correspondence with the search nodes. This

feature can greatly simplify the design of genetic

operators. It is obvious that our coding method

satisfies this feature, because tasks are ordered

globally.

3.2.2 Initial Population

Each individual of the initial population is

generated through a random list heuristic. For each

iteration, the task to be scheduled is determined by

the following two rules:

I. Choose a ready task, which all predecessors

are already scheduled, at random.

II. Allocate it to a processor randomly.

In previous subsection we have defined that

a feasible schedule must satisfy two conditions.

Based on the first rule we can always generate

feasible schedules in the initial population. On the

other hand, the task distribution over processors is

uniform since we randomly choose a processor at

every iteration.

3.2.3 Fitness Function

Our scheduling goal is to minimize the

entire execution time of the task schedule. But in

the implementation, we change it to maximization

problem. We let the fitness value of a feasible

schedule equals to (max_makespan – makespan)

where makespan is the entire execution time of

this schedule; max_makespan is the largest

makespan of the current population.

3.2.4 Selection

The selection is done using a biased roulette

wheel principle. Thus, the better the fitness of an

individual, the better the odds of it being selected.

3.2.5 Crossover

Crossover takes two individuals as input and

generates two new individuals, by crossing the

parents’ characteristics. Hence, the offsprings keep

some of the characteristics of the parents. Let s1

and s2 be individuals which should generate

offsprings s1’ and s2’. We implement two crossover

operators in PGA. The first one is the classical

one-point crossover. S1’ and s2’ are generated by

following rules and illustrated in Fig. 4:

I. Keep the sequence parts of s1 and s2 to s1’ and

t1 … Task# sequence part

allocation part

t2 tn

Proc# p1 p2 … pn

Fig. 3. Feasible schedule.

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6

2 0 2 1 1 2 0 1 2 0 1 2

s2’ directly.

II. Choose a crossover point randomly to

separate the allocation parts of s1 and s2.

III. Exchange the allocation parts of s1 and s2 alter

the crossover point.

The second one uses the following rules and

is illustrated in Fig. 5:

I. Keep the sequence parts of s1 and s2 to s1’ and

s2’ directly.

II. Select a set of tasks randomly.

III. Exchange the allocation parts of s1 and s2 of

the selected tasks.

In these two crossover mechanisms, we

never change the sequence parts. Hence, s1’ and s2’

generated by them are always feasible. This

feature makes us skip the design of check and

repair algorithm, which is the most complex part

in genetic algorithm design.

3.2.6 Mutation

Mutation ensures that the probability of

finding the optimal solution is never zero. It also

acts as a safety net to recover good genetic

material that may be lost through selection and

crossover. We implement two mutation operators

in PGA. The first one selects two tasks randomly

and swaps their allocation parts. The second one

selects a task and alters its allocation part at

random. These operators can always generate

feasible offspring, too.

3.3 Conquer Algorithm

Since Blevel Partition Algorithm always

generates legal partition result, subgroups can be

Fig. 4. Crossover example.

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6

2 0 2 1 1 2 0 1 2 0 1 2

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10

1 1 2 0 2 1 0 0 2 1 1 2

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6

2 0 2 0 1 2 0 0 2 0 1 2

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10

1 1 2 1 2 1 0 1 2 1 1 2

crossover
point

Parent 1 Parent 2

Child 1 Child 2
crossover

crossover
point

crossover
point

crossover
point

crossover
point

crossover
point

Fig. 5. Crossover example.

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6

2 0 2 1 1 2 0 1 2 0 1 2

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10

1 1 2 0 2 1 0 0 2 1 1 2

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6

2 1 2 1 2 1 0 0 2 1 1 2

T2 T1 T0 T4 T3 T7 T9 T11 T9 T5 T6 T10

1 0 2 0 1 2 0 1 2 0 1 2

Parent 1 Parent 2

Child 1 Child 2
crossover

cascaded in sequence to form the global schedule.

However, because precedence constraints between

subgroups are not yet considered, the entire

makespan currently maintained is not precise.

Therefore, after scheduling all subgroups, we need

an additional conquer algorithm to cascade all

local schedules and recalculate the entire

makespan. This conquer algorithm is quite simple.

Final schedule are directly combined form all

local schedules, and the makespan recalculating

process is the same as before.

Finally, Fig. 6 shows the complete PGA

flowchart.

4 Experimental Results

4.1 Simulation Environment

We construct a simulation and evaluation

environment to evaluate PGA. Our simulator

contains four independent parts which will be

executed in sequence. The first part is a task graph

generator. Based on the number of tasks inputted

by the user, it will generate task graphs randomly.

Blevel Partition Algorithm is implemented in the

second part, which will partition entire task graph

into several subgroups assigned by the user. The

third part is the most critical one. It applies

original genetic algorithm to schedule all

subgroups in sequence and generates local

schedules. The last part is used to conquer all local

schedules and recalculates the entire makespan.

4.2 Results

In order to control the number of tasks in

each subgroup, we generate two sets of task

graphs to evaluate PGA. The first set contains task

graphs with 40 to 100 tasks. They are partitioned

into 1~5 subgroups and executed on a system with

4 processors. Task graphs in the second set contain

100 to 500 tasks. We partition them into 1~10

subgroups and use a system with 8 processors to

execute them. In the following, experimental

results for both task graph sets are shown together.

Meanwhile, when scheduling each subgroup, the

number of populations is adapted to the number of

tasks in that subgroup. Probabilities of crossover

and mutation are fixed, and the genetic algorithm

will stop when the local makespan is unchanged

after some predefined number of generations.

Fig. 7 shows performances of PGA with

different number of subgroups. These

performances (makespans) are normalized, and

PGA with only one subgroup is essentially the

same as original genetic algorithm. At here we can

see that normalized performances only vary

between 0.965 and 1.024. It indicates that the

scheduling ability of PGA is similar as original

genetic algorithm, sometimes it is even better.

In Fig. 8, i t is clear that PGA can

dramatically decreases the scheduling time.

Relations between scheduling time and number of

subgroups are not linear. From our simulation, the

decreasing of scheduling time is noticeable only

for less number of subgroups. After that the time

Fig. 6. Flowchart of PGA.

task graph

Blevel Partition Algorithm

Genetic Algorithm

Conquer Algorithm

schedule all
subgroups?

Y

N

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1 2 3 4 5
Number of subgroups

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

)
40 tasks 50 tasks
60 tasks 80 tasks
100 tasks

0.995

1

1.005

1.01

1.015

1.02

1.025

1 2 3 4 5 6 7 8 9 10
Number of subgroups

Pe
rf

or
m

an
ce

 (N
or

m
al

iz
ed

)

100 tasks 200 tasks
300 tasks 400 tasks
500 tasks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5
Number of subgroups

Ti
m

e
(N

or
m

al
iz

ed
)

40 tasks 50 tasks
60 tasks 80 tasks
100 tasks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10
Number of subgroups

Ti
m

e
(N

or
m

al
iz

ed
)

100 tasks 200 tasks
300 tasks 400 tasks
500 tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

40 50 60 80 100
Number of tasks

Ti
m

e
(u

ni
t)

1 subgroup 2 subgroups
3 subgroups 4 subgroups
5 subgroups

0
1
2
3
4
5
6
7
8
9

10

100 200 300 400 500
Number of tasks

Ti
m

e
(u

ni
t)

1 subgroup 2 subgroups
4 subgroups 6 subgroups
8 subgroups 10 subgroups

variation is very slight.

Finally, Fig. 9 shows the scheduling time

with different pairs of number of tasks and

subgroups. It is obvious that if we partition the

Fig. 7. Experimental results.
(a) (b)

Fig. 8. Experimental results.
(a) (b)

Fig. 9. Experimental results.
(a) (b)

task graph into more subgroups, the scheduling

time increases much slower when the number of

tasks becomes larger. This result indicates PGA is

scalable than original genetic algorithm, which

can indirectly extend its practicability.

5 Conclusions

In this paper we have proposed a modified

genetic algorithm to schedule parallel program on

multiprocessor system and constructed a

simulation and evaluation environment to evaluate

it. Our scheduling goal is to find a schedule that

minimizes the entire makespan. Genetic

algorithms are powerful but usually suffer from

longer scheduling time. Therefore, we present

PGA to overcome this drawback. According to our

simulation results, PGA can exactly not only

obtain similar performance as original genetic

algorithm, but also spend less time doing

scheduling. This feature also makes PGA more

scalable and extends its practicability.

Reference

[1] Parallel and Distributed Computing

Handbook. A.Y. Zomaya, ed. New York:

McGraw- Hill, 1996.

[2] H. El-Rewini, T.T. Lewis, and H.H. Ali.

Task Scheduling in Parallel and

Distributed Systems. New Jersey: Prentice

Hall, 1994.

[3] Y. Chow and W.H. Kohler, “Models for

Dynamic Load Balancing in a

Heterogeneous Multiple Processor System”,

IEEE Transactions on Computers, Vol. 28,

pp. 354-361, 1979.

[4] A.Y. Zomaya, C. Ward, and B. Macey,

“Genetic Scheduling for Parallel Processor

Systems: Comparative Studies and

Performance Issues”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 10,

No. 8, pp. 795-812, Aug. 1999.

[5] Ricardo C. Correa, Afonso Ferreira, and

Pascal Rebreyend, “Scheduling

Multiprocessor Tasks with Genetic

Algorithms”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 10, No. 8, pp.

825-837, Aug. 1999.

[6] Andrei Radulescu and Arjan J.C. van

Gemund, “Low-cost Task Scheduling for

Distributed-memory Machines”, IEEE

Transactions on Parallel and Distributed

Systems, Vol. 13, No. 6, pp. 648-658, June

2002.

[7] D. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning.

Reading, Mass.: Addison-Wesley, 1989.

[8] Yu-Kwong Kwok and Ishfaq Ahmad,

“Dynamic Critical-path Scheduling: An

Effective Technique for Allocating Task

Graphs to Multiprocessors”, IEEE

Transactions on Parallel and Distributed

Systems, Vol. 7, No. 5, pp. 506-521, May

1996.

[9] Tao Yang and Apostolos Gerasoulis, “DSC:

Scheduling Parallel Tasks on an Unbounded

Number of Processors”, IEEE Transactions

on Parallel and Distributed Systems, Vol. 5,

No. 9, pp. 951-967, Sep. 1994.

[10] M. Lin and L.T. Yang, “Hybrid Genetic

Algorithms for Scheduling Partially Ordered

Tasks in a Multiprocessor Environment”,

Proc. of 6th International Conference on

Real-time Computing Systems and

Applications, pp. 382-387, 1999.

