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Abstract 

The impressive proliferation in the use of 

multiprocessor systems these days in a great 

variety of applications is the result of many 

breakthroughs over the last two decade. In these 

multiprocessor systems, an efficient scheduling of 

a parallel program onto the processors that 

minimizes the entire execution time is vital for 

achieving a high performance. This problem is 

exactly known very hard to solve, so many 

heuristic methods are designed to obtain 

near-optimal solutions. Genetic Algorithms are 

widely used to solve this problem, which are quite 

effective but not efficient enough. Therefore, we 

propose a modified genetic algorithm to overcome 

this drawback and construct a simulation and 

evaluation environment to evaluate it. Our method 

is called Partitioned Genetic Algorithm (PGA), 

which integrates the concept of Divide-and- 

Conquer mechanism to partition the entire 

problem into subgroups and solve them 

individually. According to our experimental results, 

PGA can not only dramatically decrease the time 

doing scheduling, but also obtain similar 

performances as original genetic algorithms, 

sometimes it is even better. 

 

1 Introduction 

With many breakthroughs such as device 

technology, theory, computer architectures, and 

software tools, multi- processor systems are used 

in a great variety of applications [1]. In these 

multiprocessor systems, scheduling is a major 

issue in its operation, which is also an important 

problem in other areas such as manufacturing, 

process control, economics, operation research, etc. 

[2]. Basically, scheduling is to simply allocate a 

set of tasks to resources such that the optimum 

performance is obtained. However, it is known to 

be NP-complete for the general case and even for 

many restricted cases [3]. Therefore, scheduling is 

usually handled by heuristic methods which 

provide reasonable solutions of the problem. 

Multiprocessor scheduling methods can be 

divided into list heuristics and meta-heuristics 

[4-5]. List heuristics assign each task a priority 

and sort them in decreasing order [8-9]. As 

processors become available, the task with the 

highest priority is selected and allocated to the 

most suited processor. Most of them are efficient 

but often can’t obtain reasonable solutions in all 

situations. 

Meta-heuristics, known as Genetic 

Algorithms, is a guided random search method 

which mimics the principles of evolution and 

natural genetics [7]. Because genetic algorithms 

search optimal solutions from entire solution space, 

they often can obtain reasonable solutions in all 

situations. Nevertheless, their main drawback is to 

spend much time doing scheduling. Hence, we 

propose a modified genetic algorithm to overcome 

this drawback in this paper. 

Our method is named Partitioned Genetic 

Algorithm (PGA), which integrates the concept of  



 

 

 

 

 

 

 

 

 

 

 

 

 

Divide-and- Conquer mechanism to partition the 

entire problem into subgroups and solve them 

individually. Like the essential advantage of 

Divide-and-Conquer mechanism, experimental 

results show that PGA can dramatically decrease 

the time doing scheduling. Meanwhile, our results 

also indicate that PGA can obtain similar 

performance as original genetic algorithms, 

sometimes it is even better. 

The remaining of this paper is organized as 

follows. Section 2 contains some preliminaries. 

Design issues and principles of our PGA are 

introduced in Section 3. Section 4 gives 

experimental results to demonstrate features and 

merits of our PGA. Finally, some conclusions are 

given in Section 5. 

 

2 Preliminaries 

In this Section we formally define the 

multiprocessor scheduling problem. Principles of 

genetic algorithm are also introduced. 

 

2.1 Multiprocessor Scheduling [4-6] 

A homogeneous multiprocessor system is 

composed of m identical processors P0…Pm-1. 

They are connected by a complete communication 

network, where all links are identical. Each 

processor can execute only one task at a time and 

task preemption is not allowed. 

The parallel program is described by a 

Directed Acyclic Graph (DAG) G = (V, E, T, C) 

where V is the set of task nodes, E is the set of 

communication edges. The value ti ∈ T is the 

execution time of node ni ∈ V. The value cij ∈ C is 

the communication cost incurred along the edge eij 

= (ni, nj) ∈ E, which is zero if both ni and nj are 

assigned to the same processor. In this case, ni is 

said to be an immediate predecessor of nj, and nj 

itself is said to be an immediate successor of ni. A 

task without any predecessor is called entry task 

and exit task is a task without any successor. An 

example of task graph is shown in Fig. 1. 

Tlevel(ni) is defined to be the length of the 

longest path in the task graph from an entry task to 

ni, excluding the computation cost of ni. 

Symmetrically, blevel(ni) is the length of the 

longest path from ni to an exit task, including the 

computation cost of ni. Formula (2.1) and (2.2) are 

formal definitions of tlevel(ni) and blevel(ni). 

Notice that we consider communication costs 

T0 T1 T2 

T3 

T6 

T7 

T8 

T9 

T10 

T4 

T5 

T11 

ni ti eij cij eij cij 
T0 15 E0 3 3 E4 9 2 
T1 6 E0 4 1 E5 6 1 
T2 2 E0 5 1 E7 8 3 
T3 3 E1 3 2 E9 10 2 
T4 9 E1 5 2   
T5 4 E2 3 2   
T6 1 E2 4 2   
T7 9 E2 7 3   
T8 4 E3 5 2   
T9 9 E3 7 1   
T10 2 E4 5 1   
T11 10 E4 6 1   

Fig. 1.  Task graph. 



while calculating values tlevel and blevel. 
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Given a parallel program to be executed on a 

multiprocessor system, the scheduling problem 

consists of finding a task schedule that minimizes 

the entire execution time. The execution time 

yielded by a schedule is usually called makespan. 

A solution to a scheduling problem is an 

assignment for each task of a starting time and a 

processor. Optimizing allocation under time and 

precedence constraints in a multiprocessor system 

is an NP-hard problem in general [4-5, 10]. 

 

2.2 Genetic Algorithm [4-5, 7, 10] 

Genetic algorithm is a guided random search 

algorithm based on the principles of evolution and 

natural genetics. It combines the exploitation of 

past results with the exploration of new areas of 

the search space. By using survival of the fittest 

techniques and a structured yet randomized 

information exchange, genetic algorithm can 

mimic some of the innovative flair of human 

search. Genetic algorithm is randomized but not 

simple random walks. It exploits historical 

information efficiently to speculate on new search 

points with expected improvement. 

Genetic algorithm maintains a population of 

candidate solutions that evolves over time and 

ultimately converges. Individuals in the population 

are represented with chromosomes. Each 

individual has a numeric fitness value that 

measures how well this solution solves the 

problem. Genetic algorithm contains three 

operators. The selection operator selects the fittest 

individuals of the current population to serve as 

parents of the next generation. The crossover 

operator chooses randomly a pair of individuals 

and exchanges some part of the information. The 

mutation operator takes an individual randomly 

and alters it. As natural genetics, the probability of 

applying mutation is very low while that of 

crossover is usually high. The population evolves 

iteratively (in the genetic algorithm terminology, 

through generations) in order to improve the 

fitness of its individuals. 

The structure of genetic algorithm is a loop 

composed of a selection followed by a sequence of 

crossovers and mutations. Probabilities of 

crossover and mutation are constants and fixed in 

the beginning. Finally, genetic algorithm is 

executed until some termination condition is 

achieved, such as the number of iterations, 

execution time, results stability, etc. 

 

3 Partitioned Genetic Algorithm 

As mentioned before, the main drawback of 

genetic algorithms is to spend much scheduling 

time. Obviously, its scheduling time directly 

depends on the number of tasks being scheduled. 

Hence, we present a Partitioned Genetic 

Algorithm (PGA), which integrates the concept of 

Divide-and-Conquer mechanism to decrease the 

number of tasks being scheduled at a time. 

 

3.1 Blevel Partition Algorithm 

Main steps of Divide-and-Conquer 

algorithm are to divide the problem into subgroups, 

solve them individually, and merge them to form 

the final solution. In PGA we present a Blevel 

Partition Algorithm to partition the original task 

graph according to the blevel value of every task. 

Steps of Blevel Partition Algorithm are shown 

below: 

I. Calculate the blevel of each task. 



 

 

 

 

 

 

 

 

 

 

 

 

 

II. Sort tasks in decreasing order according to 

their blevel. Tie- breaking is done randomly. 

III. Partition tasks into subgroups evenly in 

sequence. 

Fig. 2 is the result of partitioning task graph 

in Fig. 1 into three subgroups and black arrows 

represent precedence constraints among subgroups. 

Notice that after partitioning, these precedence 

constraints cannot form any cycle. A partition 

result is legal if its precedence constraints don’t 

contain any cycle. Fortunately, the following 

Lemma proves that Blevel Partition Algorithm 

always generate legal partition result. 

Lemma Blevel Partition Algorithm can always 

generate legal partition results. 

Proof: Assume that S1…Sn are subgroups 

generated by Blevel Partition Algorithm and tasks 

ni ∈ Si, nj ∈ Sj, for i < j. Because Blevel Partition 

Algorithm sorts and partitions tasks in sequence, it 

is obvious that blevel(ni) ≥ blevel(nj). From the 

definition of blevel, ni cannot be a successor of nj. 

Thus, tasks in Si will not depend on any task in Sj 

and the partition result is always legal.        ٱ 

 

3.2 Genetic Algorithm 

After partitioning, all subgroups are 

scheduled using standard genetic algorithms 

individually in sequence. Complete time of every 

processor in subgroup Si is transferred to subgroup 

Si+1 as the ready time of corresponded processor. 

In other words, all processors can start executing 

tasks at different time except for the first subgroup. 

This transferring step is a key point of PGA, 

which can make the final task schedule much 

compact. 

Many genetic algorithms designed for DAG 

scheduling have been proposed. Except for pure 

genetic algorithms, some knowledge-augmented 

methods are developed to produce better results. 

Since each algorithm contains its own 

characteristics, we choose some famous genetic 

algorithms and construct a simulator to integrate 

them [4-5, 8]. Following subsections contain 

methods we have implemented. 

 

3.2.1 Coding 

A schedule is feasible if it satisfies the 

following two conditions: 

I. A task’s predecessors must have finished 

their execution before it can start executing. 

Fig. 2.  Partition result. 

ni blevel(ni) 
T0 40 
T1 28 
T2 28 
T4 24 
T3 20 
T7 16 
T9 13 
T11 10 
T5 6 
T8 4 
T10 2 
T6 1 
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II. All tasks within the task graph must execute 

at least and only once. 

A tricky question is how to represent a 

schedule in a way suitable for a heuristic 

algorithm. We decide on the following 

representation. 

 

 

 

where a pair ti, pi means that task Tti should be 

executed on processor Ppi. There is an explicit 

ordering among tasks in sequence parts. 

Chromosomes in many previous studies only 

interpret explicit task order on each processor. But 

in our coding, we let tasks ordered globally, which 

means the starting time of task Tti is less than or 

equal to Tti+1 whether they are allocated to the 

same or different processors. Fig. 3 is a feasible 

schedule of task graph in Fig. 1. 

An important factor in selecting the string 

representation is that all possible feasible 

schedules in the search space can be unique 

represented. It is also desirable, though not 

necessary, that the strings are in one-to-one 

correspondence with the search nodes. This 

feature can greatly simplify the design of genetic 

operators. It is obvious that our coding method 

satisfies this feature, because tasks are ordered 

globally. 

 

3.2.2 Initial Population 

Each individual of the initial population is 

generated through a random list heuristic. For each 

iteration, the task to be scheduled is determined by 

the following two rules: 

I. Choose a ready task, which all predecessors 

are already scheduled, at random. 

II. Allocate it to a processor randomly. 

In previous subsection we have defined that 

a feasible schedule must satisfy two conditions. 

Based on the first rule we can always generate 

feasible schedules in the initial population. On the 

other hand, the task distribution over processors is 

uniform since we randomly choose a processor at 

every iteration. 

 

3.2.3 Fitness Function 

Our scheduling goal is to minimize the 

entire execution time of the task schedule. But in 

the implementation, we change it to maximization 

problem. We let the fitness value of a feasible 

schedule equals to (max_makespan – makespan) 

where makespan is the entire execution time of 

this schedule; max_makespan is the largest 

makespan of the current population. 

 

3.2.4 Selection 

The selection is done using a biased roulette 

wheel principle. Thus, the better the fitness of an 

individual, the better the odds of it being selected. 

 

3.2.5 Crossover 

Crossover takes two individuals as input and 

generates two new individuals, by crossing the 

parents’ characteristics. Hence, the offsprings keep 

some of the characteristics of the parents. Let s1 

and s2 be individuals which should generate 

offsprings s1’ and s2’. We implement two crossover 

operators in PGA. The first one is the classical 

one-point crossover. S1’ and s2’ are generated by 

following rules and illustrated in Fig. 4: 

I. Keep the sequence parts of s1 and s2 to s1’ and  

t1 … Task# sequence part 

allocation part 

t2 tn 

Proc# p1 p2 … pn 

Fig. 3.  Feasible schedule. 

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6 

2 0 2 1 1 2 0 1 2 0 1 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s2’ directly. 

II. Choose a crossover point randomly to 

separate the allocation parts of s1 and s2. 

III. Exchange the allocation parts of s1 and s2 alter 

the crossover point. 

The second one uses the following rules and 

is illustrated in Fig. 5: 

I. Keep the sequence parts of s1 and s2 to s1’ and 

s2’ directly. 

II. Select a set of tasks randomly. 

III. Exchange the allocation parts of s1 and s2 of 

the selected tasks. 

In these two crossover mechanisms, we 

never change the sequence parts. Hence, s1’ and s2’ 

generated by them are always feasible. This 

feature makes us skip the design of check and 

repair algorithm, which is the most complex part 

in genetic algorithm design. 

 

3.2.6 Mutation 

Mutation ensures that the probability of 

finding the optimal solution is never zero. It also 

acts as a safety net to recover good genetic 

material that may be lost through selection and 

crossover. We implement two mutation operators 

in PGA. The first one selects two tasks randomly 

and swaps their allocation parts. The second one 

selects a task and alters its allocation part at 

random. These operators can always generate 

feasible offspring, too. 

 

3.3 Conquer Algorithm 

Since Blevel Partition Algorithm  always 

generates legal partition result, subgroups can be  

Fig. 4.  Crossover example. 

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6 

2 0 2 1 1 2 0 1 2 0 1 2 

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10 

1 1 2 0 2 1 0 0 2 1 1 2 

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6 

2 0 2 0 1 2 0 0 2 0 1 2 

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10 

1 1 2 1 2 1 0 1 2 1 1 2 

crossover 
point 

Parent 1 Parent 2 

Child 1 Child 2 
crossover 

crossover 
point 

crossover 
point 

crossover 
point 

crossover 
point 

crossover 
point 

Fig. 5.  Crossover example. 

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6 

2 0 2 1 1 2 0 1 2 0 1 2 

T2 T1 T0 T4 T3 T7 T9 T11 T8 T5 T6 T10 

1 1 2 0 2 1 0 0 2 1 1 2 

T0 T2 T4 T1 T3 T11 T9 T7 T5 T10 T8 T6 

2 1 2 1 2 1 0 0 2 1 1 2 

T2 T1 T0 T4 T3 T7 T9 T11 T9 T5 T6 T10 

1 0 2 0 1 2 0 1 2 0 1 2 

Parent 1 Parent 2 

Child 1 Child 2 
crossover 



 

 

 

 

 

 

 

 

 

 

 

 

 

cascaded in sequence to form the global schedule. 

However, because precedence constraints between 

subgroups are not yet considered, the entire 

makespan currently maintained is not precise. 

Therefore, after scheduling all subgroups, we need 

an additional conquer algorithm to cascade all 

local schedules and recalculate the entire 

makespan. This conquer algorithm is quite simple. 

Final schedule are directly combined form all 

local schedules, and the makespan recalculating 

process is the same as before. 

Finally, Fig. 6 shows the complete PGA 

flowchart. 

 

4 Experimental Results 

4.1 Simulation Environment 

We construct a simulation and evaluation 

environment to evaluate PGA. Our simulator 

contains four independent parts which will be 

executed in sequence. The first part is a task graph 

generator. Based on the number of tasks inputted 

by the user, it will generate task graphs randomly. 

Blevel Partition Algorithm is implemented in the 

second part, which will partition entire task graph 

into several subgroups assigned by the user. The 

third part is the most critical one. It applies 

original genetic algorithm to schedule all 

subgroups in sequence and generates local 

schedules. The last part is used to conquer all local 

schedules and recalculates the entire makespan. 

 

4.2 Results 

In order to control the number of tasks in 

each subgroup, we generate two sets of task 

graphs to evaluate PGA. The first set contains task 

graphs with 40 to 100 tasks. They are partitioned 

into 1~5 subgroups and executed on a system with 

4 processors. Task graphs in the second set contain 

100 to 500 tasks. We partition them into 1~10 

subgroups and use a system with 8 processors to 

execute them. In the following, experimental 

results for both task graph sets are shown together. 

Meanwhile, when scheduling each subgroup, the 

number of populations is adapted to the number of 

tasks in that subgroup. Probabilities of crossover 

and mutation are fixed, and the genetic algorithm 

will stop when the local makespan is unchanged 

after some predefined number of generations. 

Fig. 7 shows performances of PGA with 

different number of subgroups. These 

performances (makespans) are normalized, and 

PGA with only one subgroup is essentially the 

same as original genetic algorithm. At here we can 

see that normalized performances only vary 

between 0.965 and 1.024. It indicates that the 

scheduling ability of PGA is similar as original 

genetic algorithm, sometimes it is even better. 

In Fig.  8, i t  is clear that PGA can 

dramatically decreases the scheduling time. 

Relations between scheduling time and number of 

subgroups are not linear. From our simulation, the 

decreasing of scheduling time is noticeable only 

for less number of subgroups. After that the time  

Fig. 6.  Flowchart of PGA. 
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variation is very slight. 

Finally, Fig. 9 shows the scheduling time 

with different pairs of number of tasks and 

subgroups. It is obvious that if we partition the 

Fig. 7.  Experimental results. 
(a) (b) 

Fig. 8.  Experimental results. 
(a) (b) 

Fig. 9.  Experimental results. 
(a) (b) 



task graph into more subgroups, the scheduling 

time increases much slower when the number of 

tasks becomes larger. This result indicates PGA is 

scalable than original genetic algorithm, which 

can indirectly extend its practicability. 

 

5 Conclusions 

In this paper we have proposed a modified 

genetic algorithm to schedule parallel program on 

multiprocessor system and constructed a 

simulation and evaluation environment to evaluate 

it. Our scheduling goal is to find a schedule that 

minimizes the entire makespan. Genetic 

algorithms are powerful but usually suffer from 

longer scheduling time. Therefore, we present 

PGA to overcome this drawback. According to our 

simulation results, PGA can exactly not only 

obtain similar performance as original genetic 

algorithm, but also spend less time doing 

scheduling. This feature also makes PGA more 

scalable and extends its practicability. 
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