
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5, NO. 2, FEBRUARY 1994 I I3

A Genetic Algorithm for Multiprocessor Scheduling
Edwin S . H . Hou, Member, IEEE, Ninvan Ansari, Member, IEEE, and Hong Ren

Abshct - The problem of multiprocessor scheduling can he
stated as finding a schedule for a general task graph to be
executed on a multiprocessor system so that the schedule length
can he minimized. This scheduling problem is known to be NP-
hard, and methods based on heuristic search have been proposed
to obtain optimal and suboptimal solutions. Genetic algorithms
have recently received much attention as a class of robust sto-
chastic search algorithms for various optimization problems. In
this paper, an efficient method based on genetic algorithms is
developed to solve the multiprocessor scheduling problem. The
representation of the search node is based on the order of the
tasks being executed in each individual processor. The genetic
operator proposed is based on the precedence relations between
the tasks in the task graph. Simulation results comparing the
proposed genetic algorithm, the list scheduling algorithm, and the
optimal schedule using random task graphs, and a robot inverse
dynamics computational task graph for various are presented.

Index Terms-Direct acyclic graph, genetic algorithms, genetic
operators, multiprocessor scheduling, NP-hard, optimization, sto-
chastic search algorithms

I. INTRODUCTION

ULTIPROCESSOR scheduling has been a source of M challenging problems for researchers in the area of
computer engineering. The general problem of multiprocessor
scheduling can be stated as scheduling a set of partially
ordered computational tasks onto a multiprocessor system
so that a set of performance criteria will be optimized. The
difficulty of the problem depends heavily on the topology of
the task graph representing the precedence relations among
the computational tasks, the topology of the multiprocessor
system, the number of parallel processors, the uniformity
of the task processing time, ahd the performance criteria
chosen. In general, the multiprocessor scheduling problem is
computationally intractable even under simplified assumptions
[11. Because of this computational complexity issue, heuristic
algorithms have been proposed to obtain optimal and subop-
timal solutions to various scheduling problems.

Various approaches to the multiprocessor scheduling prob-
lem have been proposed [2]-[8]. Because of the intractability
of the problem, heuristic approaches have been developed
to solve the problem. Kashara and Narita [SI, [6] proposed
a heuristic algorithm (critical path/most immediate succes-

Manuscript received July 5, 1991; revised February 18, 1993. This work was
supported in part by the New Jersey Department of Higher Education through
NJIT Separately Budgeted Research.

E. S. H. Hou and N. Ansari are with the Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark, NJ
07102.

H. Ren was with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102. She is now with
Penril Datability Networks, Carlstadt, NJ 07072.

IEEE Log Number 9214463.

sors first) and an optimization/approximation algorithm (depth
firstlimplicit heuristic search). Chen et al. [7] developed a
state-space search algorithm (A*) coupled with a heuristic
derived from the Femandez and Bussell bound to solve the
multiprocessor scheduling problem. Hellstrom and Kana1 [8]
map the multiprocessor problem into a neural network model,
asymmetric mean-field network. In this paper, we present a
genetic algorithm approach to the multiprocessor scheduling
problem.

The multiprocessor scheduling problem considered in this
paper is based on the deterministic model; that is, the exe-
cution time and the relationship between the computational
tasks are known. The precedence relationship among the
tasks is represented by an acyclic directed graph, and the
task execution time can be nonuniform. We assume that the
multiprocessor system is uniform and nonpreemptive; that is,
the processors are identical, and a processor completes the
current task before executing a new one. This paper presents
an efficient method based on genetic algorithms to solve the
multiprocessor scheduling problem. Genetic algorithms have
recently received much attention as robust stochastic searching
algorithms for various optimization problems [9]-[121. This
class of methods is based on the principles of natural selection
and natural genetics that combine the notion of survival of
the fittest, random and yet structured search, and parallel
evaluation of nodes in the search space.

This paper is organized as follows. First, we present the
model for multiprocessor scheduling and some related def-
initions. Next a brief introduction of genetic algorithms is
given. The representation of the search nodes and a method
for generating initial population are presented next, followed
by a discussion on the fitness function, the construction of
three genetic operators: crossover, reproduction, and mutation.
Finally, we present the genetic algorithm for multiprocessor
scheduling and the simulation results.

11. MODEL AND DEFINITIONS
A set of partially ordered computational tasks can be rep-

resented by a directed acyclic task graph, TG = (V, E) ,
consisting of a finite nonempty set of vertices, V , and a
set of finite directed edges, E , connecting the vertices. The
collection of vertices, V = {TI , T2, . . . , Tm}, represents the
set of computational tasks to be executed and the directed
edges, E = {e,,}, (e,, denotes a directed edge from vertex
T, to T3) implies a partial ordering or precedence relation,
>>, exists between the tasks. That is, if T, >> T,, then task T,
must be completed before T3 can be initiated. A simple task
graph, TG, with 8 tasks is illustrated in Fig. 1 .

1045-9219/94$04.00 0 1994 IEEE

1 I4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

(Execution I time, Height)

Fig. 1. A task graph TG.

FT= 11
“r WlU

T2

T i 0 2 3 5 8 ’ 10 11

A schedule for two processors displayes as Gantt chart. Fig. 2.

various optimization problems, such as the traveling salesman
problem and gas pipeline optimization. Genetic algorithms
differ from traditional optimization methods in the following
ways 1121.

1) Genetic algorithms use a coding of the parameter set

2) Genetic algorithms search from a population of search

3) Genetic algorithms use probabilistic transition rules.
A genetic algorithm consists of a string representation
(“genes”) of the nodes in the search space, a set of genetic
operators for generating new search nodes, a fitness function
to evaluate the search nodes, and a stochastic assignment to
control the genetic operators.

Typically, a genetic algorithm consists of the following
steps.

rather than the parameters themselves.

nodes instead of from a single one.

1) Initialization-an initial population of the search nodes
is randomly generated.

each node is calculated according to the fitness function
(objective function).

3) Genetic operations-new search nodes are generated
randomly by examining the fitness value of the search
nodes and applying the genetic operators to the search
nodes.

The problem of optimal scheduling a task graph onto a

computational tasks to the processors so that the precedence
relations are maintained and all of the tasks are completed
in the shortest possible time. The time that the last task is
completed is called the finishing time (F T) of the schedule.
Fig. 2 illustrates a schedule displayed as Gantt chart for the
example task graph T G using two processors. This schedule
has a finishing time of 11 units of time. An important lower
bound for the finishing time of any schedule is the critical

multiprocessor system with P processors is to assign the 2) Evaluation of the fitness function-the fitness value of

4) Repeat steps 2 and 3 until the algorithm converges.

path length. The critical path length, t,, of a task graph is
defined as the minimum time required to complete all of the

From the above description, we can see that genetic
gorithms use the notion Of Of the fittest by passing
“good” genes to the next generation of strings and combining
different stings to explore new search points. The construction
of a genetic algorithm for any problem can be separated into
four distinct and yet related tasks.

tasks in the task graph.

task graph TG = (V,E):
we will adopt the following notations when discussing a

T; is a predecessor of Tj and Tj is a successor

T; is an ancestor of Tj and Tj is a child of T; if
of Ti if e;jcE.

there is a sequence of directed edges
leading from Ti to Tj.

PRED(T;)-the set of predecessors of Ti.
SUCC(T;)-the set of successors of Ti.
et(Ti)-the execution time of Ti.

The height of a task in a task graph is defined as

height(Ti) =

1) the choice of the representation of the strings,
2) the design of the genetic operators,
3) the determination of the fitness function, and
4) the determination of the probabilities controlling the

genetic operators.
Each of the above four components greatly affects the solution
obtained as well as the performance of the genetic algorithm.
In the following sections, we examine each of them for the
problem of multiprocessor scheduling.

if PRED (T;)=0,
height(Tj), otherwise. IV. STRING REPRESENTATION AND INITIAL POPULATION

This section introduces the string representation used for the
This height function conveys the precedence rela- multiprocessor scheduling problem and also presents a method
tions between the tasks. In fact, if task T; is an ancestor of task
Tj (i.e., if Ti must be executed before Tj), then height (Ti) <
height (Tj). If there is no path between the two tasks, however,
then there is no precedence relation between the two tasks, and
the order of execution of the two tasks can be arbitrary.

to generate an initial population of search nodes.

A. String Representation
An important factor in selecting the string representation

for the search nodes is that all of the search nodes in a search
space are represented and the representation is unique. It is
also desirable, though not necessary, that the strings are in
one-to-one correspondence with the search nodes. That is,
each string corresponds to a legal search node (see Fig. 3).
The design of the genetic operator is greatly simplified if the

111. FUNDAMENTALS OF GENETIC ALGORITHMS

Genetic algorithm was developed by Holland [13] to study
the adaptive process of natural systems and to develop artificial
systems that mimic the adaptive mechanism of natural systems.
Recently, genetic algorithms have been successfully applied to

HOU et al.: GENETIC ALGORITHM FOR MULTIPROCESSOR SCHEDULING 1 I5

(:::;:::I = Search Space String Space Search Space Saing Space

(::;I[:::;]
i comsponds to Ti

Fig. 5. Permutation representation of schedule.

LegalSeings Illegalstrings

Fig. 3. Mapping between string representation space and search space.

PI @-be-
€2

Fig. 4. List representation of schedule.

string representation space and the search space is in one-to-
one correspondence. (See Section VI.) Davis [141 considered
the problem of finding a representation for genetic algorithms
in the problem of job shop scheduling. An intermediary
encoded representation of the schedules and a decoder was
used that would always yield legal solutions to the problem.
The representation is somewhat complicated and is for a
different problem.

For the multiprocessor scheduling problem, a legal search
node (a schedule) is one that satisfies the following conditions.

1) The precedence relations among the tasks are satisfied.
2) Every task is present and appears only once in the

The string representation used in this paper is based on
the schedule of the tasks in each individual processor. This
representation eliminates the need to consider the precedence
relations between the tasks scheduled to different processors.
The precedence relations within the processor, however, must
still be maintained.

The representation of a schedule for genetic algorithms must
accommodate the precedence relations between the computa-
tional tasks. This is resolved by representing the schedule as
several lists of computational tasks. Each list corresponds to
the computational tasks executed on a processor, and the order
of the tasks in the list indicates the order of execution. Fig. 4
illustrates the list representation of the schedule in Fig. 2 . This
ordering allows us to maintain the precedence relations for
the tasks executed in a processor (intraprocessor precedence
relation) and ignore the precedence relations between tasks
executed in different processors (interprocessor precedence
relation). This is due to the fact that the interprocessor prece-
dence relations do not come into play until we actually
calculate the finishing time of the schedule. Each list can be
further viewed as a specific permutation of the tasks in the list
(allowing the last task to map to the first task). Fig. 5 illustrates
the permutation representation of the schedule in Fig. 4. Thus,
a schedule for n tasks and p processors is a permutation of
R numbers with p cycles. The permutation representation of
schedules is useful when we actually implement the genetic
algorithm.

schedule (completeness and uniqueness).

Note that not every permutation of n numbers with p cycles
corresponds to a legal schedule because of the precedence re-
lations. This representation of schedules falls into the category
that the string space is not in one-to-one correspondence with
the search space. We must bear this in mind when we design
the genetic operators.

B. Initial Population

One of the merits of genetic algorithms is that it searches
many nodes in the search space in parallel. This requires us to
generate randomly an initial population of the search nodes.
The population size is typically problem-dependent and has
to be determined experimentally. To facilitate the generation
of the schedule and the construction of the genetic operators
(see Section VI), we imposed the following height-ordering
condition on the schedules generated:

The list of tasks within each processor of the schedule is
ordered in ascending order of their height.

For example, in processor P1 of Fig. 4, we have height(T1) <
height(T5) 5 height(T4) < height(T7).

To guarantee that a schedule satisfying this condition is still
a legal schedule, that is, that the precedence relations are not
violated, we have the following lemma.

Lemma 1: A schedule satisfying the height-ordering condi-
tion is a legal schedule.

Pro08 A schedule would be illegal if a task is scheduled
to be executed before its ancestor. Suppose that T and T‘
are tasks assigned to the same processor, and that T’ is an
ancestor of T. By the definition of height, we have height(T’)
< height(T). If we order the tasks in ascending order of height,
then T‘ will be executed before T, and the schedule will be

For example, consider the task graph in Fig. 1. Task T5
(with height 1) is an ancestor of T8 (with height 3). If they
are both assigned to the same processor, then T5 will precede
T8 according to the height ordering, and this would guarantee
that T5 will be executed before T8 in that processor. If there
are no precedence relations between two tasks, however, then
the height ordering does not have to apply. For example, tasks
T6 (with height 2) and T5 are not related, and they can be
executed in any order in a processor.

Since the height-ordering condition is only a necessary
condition, the optimal schedule may not satisfy it. To reduce
the likelihood of this happening, we can modify the definition
of height as follows.

Define the new height (height’) of a task, Tj, to be a random
integer between (max height(Ti)) + 1 and (min height(Tk))-l,
over all Ti E PRED(T j) and T k E SUCC(Tj). We can then
use the following algorithm to generate the initial population
of schedules in list representation:

legal.

~

116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 2, FEBRUARY 1994

Algorithm Generate-Schedule
[This algorithm randomly generates a schedule of the task
graph TG for a multiprocessor system with p processors.]
GSl. [Initialize.] Compute height’ for every task in TG.
GS2. [Separate the tasks according to their height.] Partition
the tasks in TG into different sets, G(h) (G(h) is defined as the
set of tasks with height h), according to the value of height’.
GS3. [Loop p - 1 times.] For each of the first p - 1 processors,
do step GS4.
GS4. [Form the schedule for a processor.] For each set, G(h) ,
set NG(h) to be the number of tasks in G(h) . Randomly
generate a number, T , between 0 and NG(h) .
Pick T tasks from G(h) , remove them from G(h), and assign
them to the current processor.
GS5. [Last processor.] Assign the remaining tasks in the sets
to the last processor.

By repeatedly applying the algorithm Generate-Schedule,
we can generate the initial population of search nodes needed.

V. FITNESS FUNCTION
The fitness function in genetic algorithms is typically the

objective function that we want to optimize in the problem.
It is used to evaluate the search nodes and also controls the
genetic operators. For the multiprocessor scheduling problem,
we can consider factors such as throughput, finishing time,
and processor utilization for the fitness function. The fitness
function used for our genetic algorithm is based on the
finishing time of the schedule. The finishing time of a schedule,
S , is defined as follows:

F T (S) = maxftp(Pj),
PI

where ftp(Pj) is the finishing time for the last task in
processor Pj.

Since one of the genetic operators (reproduction) will try to
maximize the fitness function, we need to convert the finishing
time into maximization form. This can be done by defining the
fitness value of a schedule, S , as follows:

Cmax - F T (S) ,

where C,,, is the maximum finishing time observed so far.
Thus, the optimal schedule would be the smallest finishing
time and a fitness value larger than the other schedules.

VI. GENETIC OPERATORS
One of the functions of the genetic operators is to create new

search nodes based on the current population of search nodes.
New search nodes are typically constructed by combining or
rearranging parts of the old search nodes. The idea (as in
genetics) is that with a proper chosen string representation
of the search nodes, certain structures in the representation
would represent the “goodness” of that search node. Thus, by
combining the good structures of two search nodes, it may
result in an even better one. Relating this idea to multiproces-
sor scheduling, certain portions of a schedule may belong to

Smng Space String space

Fig. 6. Genetic operator that genetates: (a) Both legal and illegal strings.
(b) Only legal strings.

I I

Fig. 7. Two strings of crossover operation.

the optimal schedule. By combining several of these “optimal”
parts, we can find the optimal schedule efficiently.

If the string representation space and the search space is not
in one-to-one correspondence, then we must design the genetic
operator carefully. If the number of strings that corresponds
to illegal search nodes is relatively small, then it may be
acceptable to allow the genetic operator to generate illegal
strings (see Fig. 6(a)) and discard them later with a legality
test. If the number of strings that corresponds to illegal search
nodes is comparable to those representing legal search nodes,
however, then too much computational time will be wasted in
generating the illegal strings and checking them. In this case,
a “good” genetic operator would be one that always generates
a string representing a legal search node (see Fig. 6(b)). This
may not be achievable, however, because of factors such as
the difficulty of implementation and the high computational
cost of the operation.

For the multiprocessor scheduling problem, the genetic
operators used must enforce the intraprocessor precedence
relations, as well as the completeness and uniqueness of the
tasks in the schedule as discussed in Section IV. This would
ensure that the new strings generated will always represent
legal search nodes. We develop a genetic operator for the
multiprocessor scheduling problem based on the notion of
crossover [12].

A. Crossover

Consider the two strings (schedules) shown in Fig. 7. We can
create new strings by exchanging portions of the two strings
by using the following method.

Select sites (crossover sites) where we can cut the lists
into two halves. (See Fig. 7).
Exchange the bottom halves of P1 in string A and string
B.
Exchange the bottom halves of P2 in string A and string
B.

HOU et al.: GENETIC ALGORITHM FOR MULTIPROCESSOR SCHEDULING 117

Suing A P "'
... Suing C P ... +@e ...

Crossover site

(b)

I- sage P1 @+@+@++@
* @-@-+@

IT=13 P2 @-@-@-a
StringB p ''_ +@-b _'' s h g D p ... +@-+ ...

(a)

Fig. 9. (a) Strings A and B for crossover. (b) New strings C and D generated.

C2. [Loop for every processor.] For each processor Pi in string
Fig. 8. The two new strings generated.

The new strings created are shown in Fig. 8. Notice that one
of the new string, C, has a smaller finishing time than the
previous two strings. In fact, this is the optimal finishing time
for the task graph TG using two processors. The operation
described above can be easily extended to p processors and
appears to be quite effective. We still have to define the method
for selecting the crossover sites, however, and show that the
new strings generated are legal.

Undoubtedly, the legality of the new strings generated are
strongly related to the selection of the crossover sites. Notice
that the crossover sites used in the above example always
lie between tasks with two different heights (height(T5) #
height(T8), height(T4) # height(T6), etc.). In fact, we can
prove the following theorem.

Theorem I: If the crossover sites are chosen so that the
following conditions exist.

1) The height of the tasks next to the crossover sites are
different.

2) The height of all the tasks immediately in front of
the crossover sites are the same, thus, the new strings
generated will always be legal.

Proofi We need to show that the precedence relation is
not violated and that the completeness and uniqueness of the
tasks still holds. Consider the situation depicted in Fig. 9(a).
We have the following conditions:

height(Ti) < height(Tj), height(Ti1) < height(Tj/),
height(T,) = height(T;t).

Since all of the tasks with height greater than height(T;) are
exchanged between the two strings, no task is deleted or
duplicated. This means that completeness and uniqueness is
preserved.

After the crossover operation (see Fig. 9(b)), the following
relations are valid:

height(Ti) < height(Tj/), height(T;t) < height(Tj).

Therefore, the new strings generated still satisfy the height-
ordering condition. It follows from Lemma 1 that the new

U
The crossover operation uses the above fact and selects the

crossover sites so that conditions 1) and 2) are always satisfied.
It is summarized in the following algorithm:

strings generated are legal schedules.

Algorithm Crossover.
[This algorithm performs the crossover operation on two
strings (A and B) and generates two new strings.]
C1. [Select crossover sites.] Randomly generate a number, c,
between 0 and the maximum height of the task graph.

A and siring B, do-step C3.
C3. [Find the crossover sites.] Find the last task Tji in
processor Pi that has height c, and Tki is the task following
Tji. That is, c =height' (Tji) < height' (Tki) and height'
(T';) are the same for all i .
C4. [Loop for every processor.] For each processor Pi in string
A and string B, do step CS.
C5. [Crossover.] Using the crossover sites selected in step
C3, exchange the bottom halves of strings A and B for each
processor Pi.

Although the crossover operation is powerful, it is random
in nature and may eliminate the optimal solution. Typically,
its application is controlled by a crossover probability whose
value is determined experimentally. Furthermore, we can
always preserve the best solution found by including it in the
next generation.

B. Reproduction

A commonly used genetic operator is reproduction. The
reproduction process forms a new population of strings by
selecting strings in the old population based on their fitness
values. The selection criterion is that strings with higher fitness
value should have a higher chance of surviving to the next
generation. The rationale here is that "good" strings have
high fitness value and therefore should be preserved into the
next generation. Typically, a biased roulette wheel is used to
implement reproduction where each string in the population
occupies a slot size proportional to its fitness value. Random
numbers are generated and used as an index into the roulette
wheel to determine which string will be passed to the next
generation. Because strings with higher fitness value will have
larger slots, they are more likely to be selected and passed to
the next generation.

We can make a slight modification to improve the basic
reproduction operation by always passing the best string in
the current generation to the next generation. This modifica-
tion will increase the performance of the genetic algorithm.
The reproduction operation is summarized in the following
algorithm.

Algorithm Reproduction.
[This algorithm performs the reproduction operation on a
population of strings POP and generates a new population of
strings NEWPOP.]
RI. [Initialize.] Let NPOP t number of strings in POP.
R2. [Construct the roulette wheel.] NSUM, sum of all of the
fitness value of the strings in POP; form NSUM slots and
assign string to the slots according to the fitness value of the
string.

118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

R3. [Loop NPOP -1 times.] Do step R4 NPOP -1 times. TABLE I
R4. [Pick a string.] Generite a random number between 1 COMPARISON OF THE OPTIMAL SCHEDULE, THE GENETIC ALOGRITHM, AND THE

LIST ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING Two PROCESSORS and NSUM, and use it to index into the slots to find the
corresponding string; add this string to NEWPOP.
R5. [Add the best string.] Add the string with the highest
fitness value in POP to NEWPOP.

C. Mutation

Mutation can be considered as an occasional (with small
probability) random alternation of the value of a string. One
can think of mutation as an escape mechanism for prema-
ture convergence. For the multiprocessor scheduling problem,
mutation is applied by randomly exchanging two tasks with
the same height. The mutation operation is summarized in the
following algorithm:

Algorithm Mutation.
[This algorithm performs the mutation operation on a string
and generates a new string.]
MI. [Pick a task]. Randomly pick a task, Ti.
M2. [Match height.] Search the string for a task, Tj, with the
same height.
M3. [Exchange tasks.] Form a new string by exchanging the
two tasks, Ti and Tj, in the schedule.

Typically, the frequency of applying the mutation operator is
controlled by a mutation probability whose value is determined
experimentally.

VII. COMPLETE ALGORITHM

We can now combine all of the individual algorithms dis-
cussed above to form the genetic algorithm for multiprocessor
scheduling.

Algorithm Find-Schedule.
[This algorithm attempts to solve the multiprocessor sched-
uling problem.]
FS 1. [Initialize.] Call Generate-Schedule N times, and store
the strings created in POP.
FS2. [Repeat until convergent.] Do steps FS3-FS8 until the
algorithm is convergent.
FS3. [Compute fitness values.] Compute the fitness value of
each string in POP.
FS4. [Perform Reproduction.] Call Reproduction. BEST-
STRING + string in POP with the highest fitness value.
FS5. [Perform Crossover.] Do step FS6 NPOP/2 times.
FS6. [Crossover.] Pick two strings from NEWPOP, and
call Crossover with a probability PROB-CROSSOVER. If
crossover is performed, put the new strings in TMP ; otherwise,
put the two strings picked in TMP.
FS7. [Mutation.] For each of the string in TMP, call
Mutation with a probability PROB-MUTATION. If mutation
is performed, put the new string in POP; otherwise, put the
string picked in POP.
FS8. [Preserve the best string]. Replace the string in POP
with the smallest fitness value by BEST-STRING.

Optimal Genetic
Schedule Algorithm Algorithm OPT List G.4-OPT

(OPT) ((224)
30 392 395 416 0.8
35 410 436 457 6.3
41 490 508 522 3.7
51 653 662 674 1.4
61 768 783 822 2.0

TABLE I1
COMPARISON OF THE OFTIMAL SCHEDULE, THE GENETIC
ALGORITHM, AND THE LIST ALGORITHM FOR VARIOUS
RANDOM TASK GRAPHS USING THREE PROCESSORS

Optimal Genetic

(OPT)
"'i,6dP Schedule A l g g i m Algorithm List OPT CA-OPT K,

31 260 266 280 2.3
36 295 305 366 3.3
42 352 378 393 6.9
53 434 45 1 454 3.8
68 561 5 84 608 3.9
81 667 707 789 5.7

The algorithm terminates when it meets the convergent
criterion. Typically, this criterion can be that the best solution
in the population obtained does not change after a specific
number of generations.

VIII. SIMULATION RESULTS

The genetic algorithm discussed in the previous section
was implemented and tested on random task graphs with
known optimal schedules. The random schedules generated
have task numbers ranging from 20 to 90. The number of
successors that each task node is allowed is a random number
between 1 and 4, and the execution time for each task is a
random number between 1 and 50. The task graphs are also
tested on a list scheduling algorithm [15]. The random task
graphs are non-trivially constructed, but in such a way that
the optimal schedule is known [16]. The genetic algorithm
used the following parameters throughout the simulations:

population size = 10
crossover probability = 1.0
mutation probability = 0.05
maximum number of iterations = 1500.

Tables I through IV compare the finishing time of the
genetic algorithm and the list scheduling algorithm, along with
the optimal schedule for the random task graphs, by using
different multiprocessor configurations. The simulations were
performed on a SUN 4/490, and typically run-time is 1 s to
2 s. The genetic algorithm converges to a solution in less
than 1000 generations in all cases. From Tables I through V,
the solution obtained by the genetic algorithm is consistently
better than the list scheduling algorithm and is within 10% of
the optimal schedule.

HOU et al.: GENETIC

oenmtions

Fig. IO. The finishing times obtained by the genetic algorithm at different generations for the elbow manipulator task graph using four processors.

TABLE 111
COMPARISON OF OPTIMAL SCHEDULE, THE GENETIC ALOGORITHM, AND THE LIST

ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING FOUR PROCESSORS

TABLE V
COMPARISON OF THE OPTIMAL SCHEDULE AND THE GENETICAL
ALGORITHM FOR THE STANFORD MANIPULATOR TASK GRAPH

119

No, of Task Optimal Genetic

(O P T)
Nodes Schedule Algorithm List %, (Gdl Algorithm OPT

No. of Optimal Schedule Algorithm -%,
OPT (O P T) (G<-ll Processors

28 190 198 237 4.0
41 267 285 29 1 6.3
57 372 385 400 3.4
64 394 434 484 9.2
75 45 8 467 51 1 1.9
81 547 56 1 ? A

TABLE IV
COMPARISON OF THE OPTIMAL SCHEDULE, THE GENETIC ALGORITHM, AND THE

LIST ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING FIVE PROCESSORS

No. of Task Optimal Genetic
Nodes Schedule Algorithm List G.4-0PTs,

(G-,4, Algorithm OPT (O P T)

29 147 153 186 3.9
42 220 232 268 5.2
56 280 305 329 8.2
67 346 357 363 3.1
77 383 407 42 1 5.9
87 438 455 475 3.7

The genetic algorithm was also tested on the Newton-Euler
inverse dynamics equations task graphs for the Stanford ma-

. 1 r , _ - . - - . . .

2 1242 1249 0.6
3 879 938 6.7
4 659 774 17.5
5 586 679 15.9
6 573 627 9.4
7 510 609 6.8
8 570 570 0
9 570 570 0

the simulations:
population size = 20
crossover probability = 0.5
mutation probability = 0.005
maximum number of iterations = 2000.

Table V summarizes the solution obtained from the genetic
algorithm and the optimal solution for the Stanford manipula-
tor task graph with various numbers of processors. The genetic
algorithm typically converges to a solution in 1500 generations
and requires less than 5 s of CPU time on a VAX 7580. Table
VI summarizes the solution found by the genetic algorithm for
the elbow manipulator task graph. Fig. 10 shows the finishing
time of the best schedule (for four processors) found by the
genetic algorithm at different generations, with and without
nreservinp the hest crhednle in each peneration

nipulator ana emow manipulator 161. I he Stantord manipulator
task graph consists of 88 tasks, and task execution time ranges
from 1 to 1 11 ps. The elbow manipulator task graph has 103
tasks, and task processing time ranges from 10 to 570 ps. The
genetic algorithm used the following parameters throughout

r----- ---- ---- --------- ---

IX. CONCLUSION

In this paper, we considered the multiprocessor scheduling
problem. A stochastic search method based on the genetic al-

120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994

TABLE VI

A L G O R ~ H M FOR THE ELBOW MANIPULATOR TASK GRAPH
COMPARISON OF THE OFTlMAL SCHEDULE AND THE GENETIC

2 1 1 710 12 340 5.4
3 7819 8940 14.3
4 6630 7260 9.5
5 6630 6980 5.3
6 6630 6630 0
7 6630 6630 0

[1 I] Proc. 3rd Inf. Conf Genetic Algorithms, June 4-7, 1989, George Mason
Univ., Washington, DC.

[121 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[I31 J. Holland, Adaptation in Natural and Artijcial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

(141 L. Davis, “Job shop scheduling with genetic algorithms,” Proc. 1st Int.
Conf Genetic Algorithms and Their Applications, July 24-26, 1985,
Camegie-Mellon University, Pittsburgh, PA, pp. 136-140.

[151 K. Hwang and F. A. Briggs, Computer Architecture and Parallel Pro-
cessing.

[161 N. Desni, “Generating random task graphs with known optimal schedule
for multiprocessing scheduling,” Master’s Project Rep., NJIT, Newark,
NJ, 1993.

New York: McGrdw Hill, 1984.

gorithm approach is proposed. The representation of the search
nodes (schedules) used are in the form of lists of computational
tasks. This eliminates the need to consider the precedence
relations between tasks in different processors and allows us
to construct an efficient crossover operator. The crossover

of the tasks and guarantees that the new strings generated
are legal. The proposed genetic algorithm was tested with

equations task graphs for the Stanford manipulator and elbow

E.S.H. Hou (S’83-M’89) received two B.S de-
grees (magna cum luude), in electrical engineering
and computer engineering, from the University of
Michigan, Ann Arbor, in 1982, he received the
M S degree in computer science from Stanford
Univenity, Stanford, CA, in 1984, and he received
the Ph.D. degree in electrical engineering from
Purdue University, W. Lafayette, IN, in 1989

He is an Assistant Professor in the Department
of Electrical and Computer Engineering, as well as
Assistant Director in the Electronic Imaging Center,

at the New Jersev Institute of Technologv, Newark. NJ HIS research interests

operator developed takes into account the precedence relations

random task graphs and the Newton-Euler inverse dynamic

manipulator.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their
helpful comments and suggestions that have improved the
quality of this manuscript.

REFERENCES

[I] M. R. Garey and D. S. Johnson, Computers and Intractability. New
York W.H. Freeman, 1979.

[2] C. V. Ramamoorthy et al., “Optimal scheduling strategies in a multi-
processor system,” IEEE Trans. Comput., vol. C-21, pp. 137-146, Feb.
1972.

[3] T.L. Adams et al., “A comparison of list schedules for parallel pro-
cessing systems,” Comm. Assoc. Computing Machinery, vol. 17. pp.
685-690, Dec. 1974.

[4] M. J. Gonzalez, “Deterministic processor scheduling,” Computing Sur-
veys, vol. 9, no. 3, pp. 173-204, Sept. 1977.

[5] H. Kasahara and S. Narita, “Practical multiprocessing scheduling al-
gorithms for efficient parallel processing,” IEEE Trans. Comput., vol.
C-33, no. 11, pp. 1023-1029, Nov. 1984.

[6] H. Kasahara and S. Narita, “Parallel processing of robot-arm con-
trol computation on a multimicroprocessor system,” IEEE J. RoboricJ
Automarion, vol. RA-1, no. 2, pp. 104-113, June 1985.

[7] C.L. Chen, C.S.G. Lee and E.S.H. Hou, “Efficient scheduling algo-
rithms for robot inverse dynamics computation on a multiprocessor
system,” IEEE Trans. Syst., Man, Cybernetics, vol. 18, pp. 729-743,
Dec. 1988.

[Sl B. Hellstrom and L. Kanal, “Asymmetric mean-field neural networks
for multiprocessor scheduling,” Neural Nerworks, vol. 5 . pp. 671-686,
1992.

[91 Proc. 1st Int. Conf Genetic Algorithms and Their Applications, July
24-26, 1985, Camegie-Mellon University, Pittsburgh, PA.

1101 Proc. 2nd Int. Conf Genetic Algorithms and Their Applications, July
28-31, 1987, MIT, Cambridge, MA.

I~

include infrared imaging, genetic algorithms, scheduling, and neural networks.
Dr. Hou was the Local Arrangement Chairman for the 1993 IEEE Regional

Conference on Control Systems.

N. Ansari (S’81-M’88) received the B.S.E.E from
the New Jersey Institute of Technology in 1982,
the M S.E.E. from the University of Michigan in
1983, and the Ph.D. degree from Purdue University
in 1988.

Since August 1988, he has been with the Depart-
ment of Electrical and Computer Engineering at the
New Jersey Institute of Technology, Newark, NJ,
currently as an Associate Professor His research
interests include neural computing, pattem recogni-
tion, nonlinear signal processing, computer vision,

and intelligent networks. He has been serving as a frequent referee, as a
session chair/organizer, and as a technical representative for various major
journal$, conferences, and federal agencies

Dr. Ansan has published his research findings regularly. He has co-edited
a book, Neural Network Applicatronr for Telecommunccations, published by
Kluwer in 1993

H. Ren received the B.S E.E degree in Electronic
Instruments and Measurements from Tong Ji Uni-
versity, Shanghai, China, in 1984, and the M3.E E.
from the New Jersey Institute of Technology (NJIT),
Newark, NJ, in 1991

Since October 1991, she has been a Software
Engineer at Penril Datability Networks, Carlstadt,
NJ From 1990 to 1991, she was a Research Assis-
tant in the Department of Electrical and Computer
Engineering dt NJIT

