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Abshct -  The problem of multiprocessor scheduling can he 
stated as finding a schedule for a general task graph to be 
executed on a multiprocessor system so that the schedule length 
can he minimized. This scheduling problem is known to be NP- 
hard, and methods based on heuristic search have been proposed 
to obtain optimal and suboptimal solutions. Genetic algorithms 
have recently received much attention as a class of robust sto- 
chastic search algorithms for various optimization problems. In 
this paper, an efficient method based on genetic algorithms is 
developed to solve the multiprocessor scheduling problem. The 
representation of the search node is based on the order of the 
tasks being executed in each individual processor. The genetic 
operator proposed is based on the precedence relations between 
the tasks in the task graph. Simulation results comparing the 
proposed genetic algorithm, the list scheduling algorithm, and the 
optimal schedule using random task graphs, and a robot inverse 
dynamics computational task graph for various are presented. 

Index Terms-Direct acyclic graph, genetic algorithms, genetic 
operators, multiprocessor scheduling, NP-hard, optimization, sto- 
chastic search algorithms 

I. INTRODUCTION 

ULTIPROCESSOR scheduling has been a source of M challenging problems for researchers in the area of 
computer engineering. The general problem of multiprocessor 
scheduling can be stated as scheduling a set of partially 
ordered computational tasks onto a multiprocessor system 
so that a set of performance criteria will be optimized. The 
difficulty of the problem depends heavily on the topology of 
the task graph representing the precedence relations among 
the computational tasks, the topology of the multiprocessor 
system, the number of parallel processors, the uniformity 
of the task processing time, ahd the performance criteria 
chosen. In general, the multiprocessor scheduling problem is 
computationally intractable even under simplified assumptions 
[ 11. Because of this computational complexity issue, heuristic 
algorithms have been proposed to obtain optimal and subop- 
timal solutions to various scheduling problems. 

Various approaches to the multiprocessor scheduling prob- 
lem have been proposed [2]-[8]. Because of the intractability 
of the problem, heuristic approaches have been developed 
to solve the problem. Kashara and Narita [SI, [6] proposed 
a heuristic algorithm (critical path/most immediate succes- 
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sors first) and an optimization/approximation algorithm (depth 
firstlimplicit heuristic search). Chen et al. [7] developed a 
state-space search algorithm (A*) coupled with a heuristic 
derived from the Femandez and Bussell bound to solve the 
multiprocessor scheduling problem. Hellstrom and Kana1 [8] 
map the multiprocessor problem into a neural network model, 
asymmetric mean-field network. In this paper, we present a 
genetic algorithm approach to the multiprocessor scheduling 
problem. 

The multiprocessor scheduling problem considered in this 
paper is based on the deterministic model; that is, the exe- 
cution time and the relationship between the computational 
tasks are known. The precedence relationship among the 
tasks is represented by an acyclic directed graph, and the 
task execution time can be nonuniform. We assume that the 
multiprocessor system is uniform and nonpreemptive; that is, 
the processors are identical, and a processor completes the 
current task before executing a new one. This paper presents 
an efficient method based on genetic algorithms to solve the 
multiprocessor scheduling problem. Genetic algorithms have 
recently received much attention as robust stochastic searching 
algorithms for various optimization problems [9]-[ 121. This 
class of methods is based on the principles of natural selection 
and natural genetics that combine the notion of survival of 
the fittest, random and yet structured search, and parallel 
evaluation of nodes in the search space. 

This paper is organized as follows. First, we present the 
model for multiprocessor scheduling and some related def- 
initions. Next a brief introduction of genetic algorithms is 
given. The representation of the search nodes and a method 
for generating initial population are presented next, followed 
by a discussion on the fitness function, the construction of 
three genetic operators: crossover, reproduction, and mutation. 
Finally, we present the genetic algorithm for multiprocessor 
scheduling and the simulation results. 

11. MODEL AND DEFINITIONS 
A set of partially ordered computational tasks can be rep- 

resented by a directed acyclic task graph, TG = (V, E ) ,  
consisting of a finite nonempty set of vertices, V ,  and a 
set of finite directed edges, E ,  connecting the vertices. The 
collection of vertices, V = {TI ,  T2, . . . , Tm}, represents the 
set of computational tasks to be executed and the directed 
edges, E = {e,,}, (e,, denotes a directed edge from vertex 
T, to T3 ) implies a partial ordering or precedence relation, 
>>, exists between the tasks. That is, if T, >> T,, then task T, 
must be completed before T3 can be initiated. A simple task 
graph, TG, with 8 tasks is illustrated in Fig. 1 .  
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Fig. 1. A task graph TG. 
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A schedule for two processors displayes as Gantt chart. Fig. 2. 

various optimization problems, such as the traveling salesman 
problem and gas pipeline optimization. Genetic algorithms 
differ from traditional optimization methods in the following 
ways 1121. 

1) Genetic algorithms use a coding of the parameter set 

2) Genetic algorithms search from a population of search 

3) Genetic algorithms use probabilistic transition rules. 
A genetic algorithm consists of a string representation 
(“genes”) of the nodes in the search space, a set of genetic 
operators for generating new search nodes, a fitness function 
to evaluate the search nodes, and a stochastic assignment to 
control the genetic operators. 

Typically, a genetic algorithm consists of the following 
steps. 

rather than the parameters themselves. 

nodes instead of from a single one. 

1) Initialization-an initial population of the search nodes 
is randomly generated. 

each node is calculated according to the fitness function 
(objective function). 

3)  Genetic operations-new search nodes are generated 
randomly by examining the fitness value of the search 
nodes and applying the genetic operators to the search 
nodes. 

The problem of optimal scheduling a task graph onto a 

computational tasks to the processors so that the precedence 
relations are maintained and all of the tasks are completed 
in the shortest possible time. The time that the last task is 
completed is called the finishing time ( F T )  of the schedule. 
Fig. 2 illustrates a schedule displayed as Gantt chart for the 
example task graph T G  using two processors. This schedule 
has a finishing time of 11 units of time. An important lower 
bound for the finishing time of any schedule is the critical 

multiprocessor system with P processors is to assign the 2) Evaluation of the fitness function-the fitness value of 

4) Repeat steps 2 and 3 until the algorithm converges. 

path length. The critical path length, t,, of a task graph is 
defined as the minimum time required to complete all of the 

From the above description, we can see that genetic 
gorithms use the notion Of Of the fittest by passing 
“good” genes to the next generation of strings and combining 
different stings to explore new search points. The construction 
of a genetic algorithm for any problem can be separated into 
four distinct and yet related tasks. 

tasks in the task graph. 

task graph TG = (V,E):  
we will adopt the following notations when discussing a 

T; is a predecessor of Tj and Tj is a successor 

T; is an ancestor of Tj and Tj is a child of T; if 
of Ti if e;jcE. 

there is a sequence of directed edges 
leading from Ti to Tj.  

PRED(T;)-the set of predecessors of Ti. 
SUCC(T;)-the set of successors of Ti. 
et(Ti)-the execution time of Ti. 

The height of a task in a task graph is defined as 

height(Ti) = 

1) the choice of the representation of the strings, 
2) the design of the genetic operators, 
3) the determination of the fitness function, and 
4) the determination of the probabilities controlling the 

genetic operators. 
Each of the above four components greatly affects the solution 
obtained as well as the performance of the genetic algorithm. 
In the following sections, we examine each of them for the 
problem of multiprocessor scheduling. 

if PRED (T; )=0,  
height(Tj), otherwise. IV. STRING REPRESENTATION AND INITIAL POPULATION 

This section introduces the string representation used for the 
This height function conveys the precedence rela- multiprocessor scheduling problem and also presents a method 
tions between the tasks. In fact, if task T; is an ancestor of task 
Tj (i.e., if Ti must be executed before Tj ), then height (Ti) < 
height (Tj). If there is no path between the two tasks, however, 
then there is no precedence relation between the two tasks, and 
the order of execution of the two tasks can be arbitrary. 

to generate an initial population of search nodes. 

A. String Representation 
An important factor in selecting the string representation 

for the search nodes is that all of the search nodes in a search 
space are represented and the representation is unique. It is 
also desirable, though not necessary, that the strings are in 
one-to-one correspondence with the search nodes. That is, 
each string corresponds to a legal search node (see Fig. 3). 
The design of the genetic operator is greatly simplified if the 

111. FUNDAMENTALS OF GENETIC ALGORITHMS 

Genetic algorithm was developed by Holland [13] to study 
the adaptive process of natural systems and to develop artificial 
systems that mimic the adaptive mechanism of natural systems. 
Recently, genetic algorithms have been successfully applied to 
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Fig. 5. Permutation representation of schedule. 
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Fig. 3. Mapping between string representation space and search space. 
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Fig. 4. List representation of schedule. 

string representation space and the search space is in one-to- 
one correspondence. (See Section VI.) Davis [ 141 considered 
the problem of finding a representation for genetic algorithms 
in the problem of job shop scheduling. An intermediary 
encoded representation of the schedules and a decoder was 
used that would always yield legal solutions to the problem. 
The representation is somewhat complicated and is for a 
different problem. 

For the multiprocessor scheduling problem, a legal search 
node (a schedule) is one that satisfies the following conditions. 

1) The precedence relations among the tasks are satisfied. 
2) Every task is present and appears only once in the 

The string representation used in this paper is based on 
the schedule of the tasks in each individual processor. This 
representation eliminates the need to consider the precedence 
relations between the tasks scheduled to different processors. 
The precedence relations within the processor, however, must 
still be maintained. 

The representation of a schedule for genetic algorithms must 
accommodate the precedence relations between the computa- 
tional tasks. This is resolved by representing the schedule as 
several lists of computational tasks. Each list corresponds to 
the computational tasks executed on a processor, and the order 
of the tasks in the list indicates the order of execution. Fig. 4 
illustrates the list representation of the schedule in Fig. 2 .  This 
ordering allows us to maintain the precedence relations for 
the tasks executed in a processor (intraprocessor precedence 
relation) and ignore the precedence relations between tasks 
executed in different processors (interprocessor precedence 
relation). This is due to the fact that the interprocessor prece- 
dence relations do not come into play until we actually 
calculate the finishing time of the schedule. Each list can be 
further viewed as a specific permutation of the tasks in the list 
(allowing the last task to map to the first task). Fig. 5 illustrates 
the permutation representation of the schedule in Fig. 4. Thus, 
a schedule for n tasks and p processors is a permutation of 
R numbers with p cycles. The permutation representation of 
schedules is useful when we actually implement the genetic 
algorithm. 

schedule (completeness and uniqueness). 

Note that not every permutation of n numbers with p cycles 
corresponds to a legal schedule because of the precedence re- 
lations. This representation of schedules falls into the category 
that the string space is not in one-to-one correspondence with 
the search space. We must bear this in mind when we design 
the genetic operators. 

B. Initial Population 

One of the merits of genetic algorithms is that it searches 
many nodes in the search space in parallel. This requires us to 
generate randomly an initial population of the search nodes. 
The population size is typically problem-dependent and has 
to be determined experimentally. To facilitate the generation 
of the schedule and the construction of the genetic operators 
(see Section VI), we imposed the following height-ordering 
condition on the schedules generated: 

The list of tasks within each processor of the schedule is 
ordered in ascending order of their height. 

For example, in processor P1 of Fig. 4, we have height(T1) < 
height(T5) 5 height(T4) < height(T7). 

To guarantee that a schedule satisfying this condition is still 
a legal schedule, that is, that the precedence relations are not 
violated, we have the following lemma. 

Lemma 1: A schedule satisfying the height-ordering condi- 
tion is a legal schedule. 

Pro08 A schedule would be illegal if a task is scheduled 
to be executed before its ancestor. Suppose that T and T‘ 
are tasks assigned to the same processor, and that T’ is an 
ancestor of T. By the definition of height, we have height(T’) 
< height(T). If we order the tasks in ascending order of height, 
then T‘ will be executed before T,  and the schedule will be 

For example, consider the task graph in Fig. 1. Task T5 
(with height 1) is an ancestor of T8 (with height 3). If they 
are both assigned to the same processor, then T5 will precede 
T8 according to the height ordering, and this would guarantee 
that T5 will be executed before T8 in that processor. If there 
are no precedence relations between two tasks, however, then 
the height ordering does not have to apply. For example, tasks 
T6 (with height 2) and T5 are not related, and they can be 
executed in any order in a processor. 

Since the height-ordering condition is only a necessary 
condition, the optimal schedule may not satisfy it. To reduce 
the likelihood of this happening, we can modify the definition 
of height as follows. 

Define the new height (height’ ) of a task, Tj, to be a random 
integer between (max height(Ti)) + 1 and (min height(Tk))-l, 
over all Ti E PRED( T j )  and T k  E SUCC(Tj). We can then 
use the following algorithm to generate the initial population 
of schedules in list representation: 

legal. 
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Algorithm Generate-Schedule 
[This algorithm randomly generates a schedule of the task 
graph TG for a multiprocessor system with p processors.] 
GSl. [Initialize.] Compute height’ for every task in TG. 
GS2. [Separate the tasks according to their height.] Partition 
the tasks in TG into different sets, G(h) (G(h) is defined as the 
set of tasks with height h), according to the value of height’. 
GS3. [Loop p - 1 times.] For each of the first p - 1 processors, 
do step GS4. 
GS4. [Form the schedule for a processor.] For each set, G(h) ,  
set NG(h) to be the number of tasks in G(h) .  Randomly 
generate a number, T ,  between 0 and NG(h) .  
Pick T tasks from G(h) ,  remove them from G(h),  and assign 
them to the current processor. 
GS5. [Last processor.] Assign the remaining tasks in the sets 
to the last processor. 

By repeatedly applying the algorithm Generate-Schedule, 
we can generate the initial population of search nodes needed. 

V. FITNESS FUNCTION 
The fitness function in genetic algorithms is typically the 

objective function that we want to optimize in the problem. 
It is used to evaluate the search nodes and also controls the 
genetic operators. For the multiprocessor scheduling problem, 
we can consider factors such as throughput, finishing time, 
and processor utilization for the fitness function. The fitness 
function used for our genetic algorithm is based on the 
finishing time of the schedule. The finishing time of a schedule, 
S ,  is defined as follows: 

F T ( S )  = maxftp(Pj), 
PI 

where ftp(Pj) is the finishing time for the last task in 
processor Pj. 

Since one of the genetic operators (reproduction) will try to 
maximize the fitness function, we need to convert the finishing 
time into maximization form. This can be done by defining the 
fitness value of a schedule, S ,  as follows: 

Cmax - F T ( S ) ,  

where C,,, is the maximum finishing time observed so far. 
Thus, the optimal schedule would be the smallest finishing 
time and a fitness value larger than the other schedules. 

VI. GENETIC OPERATORS 
One of the functions of the genetic operators is to create new 

search nodes based on the current population of search nodes. 
New search nodes are typically constructed by combining or 
rearranging parts of the old search nodes. The idea (as in 
genetics) is that with a proper chosen string representation 
of the search nodes, certain structures in the representation 
would represent the “goodness” of that search node. Thus, by 
combining the good structures of two search nodes, it may 
result in an even better one. Relating this idea to multiproces- 
sor scheduling, certain portions of a schedule may belong to 

Smng Space String space 

Fig. 6. Genetic operator that genetates: (a) Both legal and illegal strings. 
(b) Only legal strings. 

I I 

Fig. 7. Two strings of crossover operation. 

the optimal schedule. By combining several of these “optimal” 
parts, we can find the optimal schedule efficiently. 

If the string representation space and the search space is not 
in one-to-one correspondence, then we must design the genetic 
operator carefully. If the number of strings that corresponds 
to illegal search nodes is relatively small, then it may be 
acceptable to allow the genetic operator to generate illegal 
strings (see Fig. 6(a)) and discard them later with a legality 
test. If the number of strings that corresponds to illegal search 
nodes is comparable to those representing legal search nodes, 
however, then too much computational time will be wasted in 
generating the illegal strings and checking them. In this case, 
a “good” genetic operator would be one that always generates 
a string representing a legal search node (see Fig. 6(b)). This 
may not be achievable, however, because of factors such as 
the difficulty of implementation and the high computational 
cost of the operation. 

For the multiprocessor scheduling problem, the genetic 
operators used must enforce the intraprocessor precedence 
relations, as well as the completeness and uniqueness of the 
tasks in the schedule as discussed in Section IV. This would 
ensure that the new strings generated will always represent 
legal search nodes. We develop a genetic operator for the 
multiprocessor scheduling problem based on the notion of 
crossover [12]. 

A. Crossover 

Consider the two strings (schedules) shown in Fig. 7. We can 
create new strings by exchanging portions of the two strings 
by using the following method. 

Select sites (crossover sites) where we can cut the lists 
into two halves. (See Fig. 7). 
Exchange the bottom halves of P1 in string A and string 
B. 
Exchange the bottom halves of P2 in string A and string 
B. 
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Fig. 9. (a) Strings A and B for crossover. (b) New strings C and D generated. 

C2. [Loop for every processor.] For each processor Pi in string 
Fig. 8. The two new strings generated. 

The new strings created are shown in Fig. 8. Notice that one 
of the new string, C, has a smaller finishing time than the 
previous two strings. In fact, this is the optimal finishing time 
for the task graph TG using two processors. The operation 
described above can be easily extended to p processors and 
appears to be quite effective. We still have to define the method 
for selecting the crossover sites, however, and show that the 
new strings generated are legal. 

Undoubtedly, the legality of the new strings generated are 
strongly related to the selection of the crossover sites. Notice 
that the crossover sites used in the above example always 
lie between tasks with two different heights (height(T5) # 
height(T8), height(T4) # height(T6), etc.). In fact, we can 
prove the following theorem. 

Theorem I: If the crossover sites are chosen so that the 
following conditions exist. 

1) The height of the tasks next to the crossover sites are 
different. 

2) The height of all the tasks immediately in front of 
the crossover sites are the same, thus, the new strings 
generated will always be legal. 

Proofi We need to show that the precedence relation is 
not violated and that the completeness and uniqueness of the 
tasks still holds. Consider the situation depicted in Fig. 9(a). 
We have the following conditions: 

height(Ti) < height(Tj), height(Ti1) < height(Tj/), 
height(T,) = height(T;t). 

Since all of the tasks with height greater than height(T;) are 
exchanged between the two strings, no task is deleted or 
duplicated. This means that completeness and uniqueness is 
preserved. 

After the crossover operation (see Fig. 9(b)), the following 
relations are valid: 

height(Ti) < height(Tj/), height(T;t) < height(Tj). 

Therefore, the new strings generated still satisfy the height- 
ordering condition. It follows from Lemma 1 that the new 

U 
The crossover operation uses the above fact and selects the 

crossover sites so that conditions 1 )  and 2) are always satisfied. 
It is summarized in the following algorithm: 

strings generated are legal schedules. 

Algorithm Crossover. 
[This algorithm performs the crossover operation on two 
strings (A and B) and generates two new strings.] 
C1. [Select crossover sites.] Randomly generate a number, c, 
between 0 and the maximum height of the task graph. 

A and siring B, do-step C3. 
C3. [Find the crossover sites.] Find the last task Tji in 
processor Pi that has height c, and Tki is the task following 
Tji. That is, c =height' (Tji) < height' ( Tki ) and height' 
(T';) are the same for all i .  
C4. [Loop for every processor.] For each processor Pi in string 
A and string B, do step CS. 
C5. [Crossover.] Using the crossover sites selected in step 
C3, exchange the bottom halves of strings A and B for each 
processor Pi. 

Although the crossover operation is powerful, it is random 
in nature and may eliminate the optimal solution. Typically, 
its application is controlled by a crossover probability whose 
value is determined experimentally. Furthermore, we can 
always preserve the best solution found by including it in the 
next generation. 

B. Reproduction 

A commonly used genetic operator is reproduction. The 
reproduction process forms a new population of strings by 
selecting strings in the old population based on their fitness 
values. The selection criterion is that strings with higher fitness 
value should have a higher chance of surviving to the next 
generation. The rationale here is that "good" strings have 
high fitness value and therefore should be preserved into the 
next generation. Typically, a biased roulette wheel is used to 
implement reproduction where each string in the population 
occupies a slot size proportional to its fitness value. Random 
numbers are generated and used as an index into the roulette 
wheel to determine which string will be passed to the next 
generation. Because strings with higher fitness value will have 
larger slots, they are more likely to be selected and passed to 
the next generation. 

We can make a slight modification to improve the basic 
reproduction operation by always passing the best string in 
the current generation to the next generation. This modifica- 
tion will increase the performance of the genetic algorithm. 
The reproduction operation is summarized in the following 
algorithm. 

Algorithm Reproduction. 
[This algorithm performs the reproduction operation on a 
population of strings POP and generates a new population of 
strings NEWPOP.] 
RI. [Initialize.] Let NPOP t number of strings in POP. 
R2. [Construct the roulette wheel.] NSUM, sum of all of the 
fitness value of the strings in POP; form NSUM slots and 
assign string to the slots according to the fitness value of the 
string. 
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R3. [Loop NPOP -1 times.] Do step R4 NPOP -1 times. TABLE I 
R4. [Pick a string.] Generite a random number between 1 COMPARISON OF THE OPTIMAL SCHEDULE, THE GENETIC ALOGRITHM, AND THE 

LIST ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING Two PROCESSORS and NSUM, and use it to index into the slots to find the 
corresponding string; add this string to NEWPOP. 
R5. [Add the best string.] Add the string with the highest 
fitness value in POP to NEWPOP. 

C. Mutation 

Mutation can be considered as an occasional (with small 
probability) random alternation of the value of a string. One 
can think of mutation as an escape mechanism for prema- 
ture convergence. For the multiprocessor scheduling problem, 
mutation is applied by randomly exchanging two tasks with 
the same height. The mutation operation is summarized in the 
following algorithm: 

Algorithm Mutation. 
[This algorithm performs the mutation operation on a string 
and generates a new string.] 
MI. [Pick a task]. Randomly pick a task, Ti. 
M2. [Match height.] Search the string for a task, Tj, with the 
same height. 
M3. [Exchange tasks.] Form a new string by exchanging the 
two tasks, Ti and Tj, in the schedule. 

Typically, the frequency of applying the mutation operator is 
controlled by a mutation probability whose value is determined 
experimentally. 

VII. COMPLETE ALGORITHM 

We can now combine all of the individual algorithms dis- 
cussed above to form the genetic algorithm for multiprocessor 
scheduling. 

Algorithm Find-Schedule. 
[This algorithm attempts to solve the multiprocessor sched- 
uling problem.] 
FS 1. [Initialize.] Call Generate-Schedule N times, and store 
the strings created in POP. 
FS2. [Repeat until convergent.] Do steps FS3-FS8 until the 
algorithm is convergent. 
FS3. [Compute fitness values.] Compute the fitness value of 
each string in POP. 
FS4. [Perform Reproduction.] Call Reproduction. BEST- 
STRING + string in POP with the highest fitness value. 
FS5. [Perform Crossover.] Do step FS6 NPOP/2 times. 
FS6. [Crossover.] Pick two strings from NEWPOP, and 
call Crossover with a probability PROB-CROSSOVER. If 
crossover is performed, put the new strings in TMP ; otherwise, 
put the two strings picked in TMP. 
FS7. [Mutation.] For each of the string in TMP, call 
Mutation with a probability PROB-MUTATION. If mutation 
is performed, put the new string in POP; otherwise, put the 
string picked in POP. 
FS8. [Preserve the best string]. Replace the string in POP 
with the smallest fitness value by BEST-STRING. 

Optimal Genetic 
Schedule Algorithm Algorithm OPT List G.4-OPT 

(OPT)  ((224) 
30 392 395 416 0.8 
35 410 436 457 6.3 
41 490 508 522 3.7 
51 653 662 674 1.4 
61 768 783 822 2.0 

TABLE I1 
COMPARISON OF THE OFTIMAL SCHEDULE, THE GENETIC 
ALGORITHM, AND THE LIST ALGORITHM FOR VARIOUS 
RANDOM TASK GRAPHS USING THREE PROCESSORS 

Optimal Genetic 

(OPT)  
"'i,6dP Schedule A l g g i m  Algorithm List OPT CA-OPT K, 

31 260 266 280 2.3 
36 295 305 366 3.3 
42 352 378 393 6.9 
53 434 45 1 454 3.8 
68 561 5 84 608 3.9 
81 667 707 789 5.7 

The algorithm terminates when it meets the convergent 
criterion. Typically, this criterion can be that the best solution 
in the population obtained does not change after a specific 
number of generations. 

VIII. SIMULATION RESULTS 

The genetic algorithm discussed in the previous section 
was implemented and tested on random task graphs with 
known optimal schedules. The random schedules generated 
have task numbers ranging from 20 to 90. The number of 
successors that each task node is allowed is a random number 
between 1 and 4, and the execution time for each task is a 
random number between 1 and 50. The task graphs are also 
tested on a list scheduling algorithm [15]. The random task 
graphs are non-trivially constructed, but in such a way that 
the optimal schedule is known [16]. The genetic algorithm 
used the following parameters throughout the simulations: 

population size = 10 
crossover probability = 1.0 
mutation probability = 0.05 
maximum number of iterations = 1500. 

Tables I through IV compare the finishing time of the 
genetic algorithm and the list scheduling algorithm, along with 
the optimal schedule for the random task graphs, by using 
different multiprocessor configurations. The simulations were 
performed on a SUN 4/490, and typically run-time is 1 s to 
2 s. The genetic algorithm converges to a solution in less 
than 1000 generations in all cases. From Tables I through V, 
the solution obtained by the genetic algorithm is consistently 
better than the list scheduling algorithm and is within 10% of 
the optimal schedule. 
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Fig. IO. The finishing times obtained by the genetic algorithm at different generations for the elbow manipulator task graph using four processors. 

TABLE 111 
COMPARISON OF OPTIMAL SCHEDULE, THE GENETIC ALOGORITHM, AND THE LIST 

ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING FOUR PROCESSORS 

TABLE V 
COMPARISON OF THE OPTIMAL SCHEDULE AND THE GENETICAL 
ALGORITHM FOR THE STANFORD MANIPULATOR TASK GRAPH 
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No, of Task Optimal Genetic 

( O P T )  
Nodes Schedule Algorithm List %, (Gdl  Algorithm OPT 

No. of Optimal Schedule Algorithm -%, 
OPT ( O P T )  (G<-ll Processors 

28 190 198 237 4.0 
41 267 285 29 1 6.3 
57 372 385 400 3.4 
64 394 434 484 9.2 
75 45 8 467 51 1 1.9 
81 547 56  1 ? A  

TABLE IV 
COMPARISON OF THE OPTIMAL SCHEDULE, THE GENETIC ALGORITHM, AND THE 

LIST ALGORITHM FOR VARIOUS RANDOM TASK GRAPHS USING FIVE PROCESSORS 

No. of Task Optimal Genetic 
Nodes Schedule Algorithm List G.4-0PTs, 

(G-,4, Algorithm OPT ( O P T )  

29 147 153 186 3.9 
42 220 232 268 5.2 
56 280 305 329 8.2 
67 346 357 363 3.1 
77 383 407 42 1 5.9 
87 438 455 475 3.7 

The genetic algorithm was also tested on the Newton-Euler 
inverse dynamics equations task graphs for the Stanford ma- 

. 1  . .. . .  r , _ - . - - .  . .  

2 1242 1249 0.6 
3 879 938 6.7 
4 659 774 17.5 
5 586 679 15.9 
6 573 627 9.4 
7 510 609 6.8 
8 570 570 0 
9 570 570 0 

the simulations: 
population size = 20 
crossover probability = 0.5 
mutation probability = 0.005 
maximum number of iterations = 2000. 

Table V summarizes the solution obtained from the genetic 
algorithm and the optimal solution for the Stanford manipula- 
tor task graph with various numbers of processors. The genetic 
algorithm typically converges to a solution in 1500 generations 
and requires less than 5 s of CPU time on a VAX 7580. Table 
VI summarizes the solution found by the genetic algorithm for 
the elbow manipulator task graph. Fig. 10 shows the finishing 
time of the best schedule (for four processors) found by the 
genetic algorithm at different generations, with and without 
nreservinp the hest crhednle in each peneration 

nipulator ana emow manipulator 161. I he Stantord manipulator 
task graph consists of 88 tasks, and task execution time ranges 
from 1 to 1 11 ps. The elbow manipulator task graph has 103 
tasks, and task processing time ranges from 10 to 570 ps. The 
genetic algorithm used the following parameters throughout 

r----- ---- ---- --------- --- 

IX. CONCLUSION 

In this paper, we considered the multiprocessor scheduling 
problem. A stochastic search method based on the genetic al- 



120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 2, FEBRUARY 1994 

TABLE VI 

A L G O R ~ H M  FOR THE ELBOW MANIPULATOR TASK GRAPH 
COMPARISON OF THE OFTlMAL SCHEDULE AND THE GENETIC 

2 1 1  710 12 340 5.4 
3 7819 8940 14.3 
4 6630 7260 9.5 
5 6630 6980 5.3 
6 6630 6630 0 
7 6630 6630 0 

[ 1 I ]  Proc. 3rd Inf. Conf Genetic Algorithms, June 4-7, 1989, George Mason 
Univ., Washington, DC. 

[ 121 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma- 
chine Learning. Reading, MA: Addison-Wesley, 1989. 

[I31 J. Holland, Adaptation in Natural and Artijcial Systems. Ann Arbor, 
MI: University of Michigan Press, 1975. 

(141 L. Davis, “Job shop scheduling with genetic algorithms,” Proc. 1st Int. 
Conf Genetic Algorithms and Their Applications, July 24-26, 1985, 
Camegie-Mellon University, Pittsburgh, PA, pp. 136-140. 

[ 151 K. Hwang and F. A. Briggs, Computer Architecture and Parallel Pro- 
cessing. 

[ 161 N. Desni, “Generating random task graphs with known optimal schedule 
for multiprocessing scheduling,” Master’s Project Rep., NJIT, Newark, 
NJ, 1993. 

New York: McGrdw Hill, 1984. 

gorithm approach is proposed. The representation of the search 
nodes (schedules) used are in the form of lists of computational 
tasks. This eliminates the need to consider the precedence 
relations between tasks in different processors and allows us 
to construct an efficient crossover operator. The crossover 

of the tasks and guarantees that the new strings generated 
are legal. The proposed genetic algorithm was tested with 

equations task graphs for the Stanford manipulator and elbow 
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